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1. Introduction

A striking prediction of models of supersymmetry (SUSY) [1] is a Higgs sector with at least

one relatively light Higgs boson. In the Minimal Supersymmetric extension of the Standard

Model (MSSM) two Higgs doublets are required, resulting in five physical Higgs bosons:

the light and heavy CP-even h and H, the CP-odd A, and the charged Higgs bosons H±.

The Higgs sector of the MSSM can be expressed at lowest order in terms of MZ (or MW ),

MA (or MH±) and tan β ≡ v2/v1, the ratio of the two vacuum expectation values. All other

masses and mixing angles can therefore be predicted. Higher-order contributions give large

corrections to the tree-level relations.

The limits obtained from the Higgs search at LEP (the final LEP results can be found

in refs. [2, 3]), place important restrictions on the parameter space of the MSSM. The

results obtained so far at Run II of the Tevatron [4 – 6] yield interesting constraints in

particular in the region of small MA and large tan β (the dependence on the other MSSM

parameters has recently been analyzed in ref. [7]). The Large Hadron Collider (LHC) has

good prospects for the discovery of at least one Higgs boson over all the MSSM param-

eter space [8 – 10] (see e.g. refs. [11, 12] for recent reviews). At the International Linear

Collider (ILC) eventually high-precision physics in the Higgs sector may become possi-

ble [13 – 15]. The interplay of the LHC and the ILC in the MSSM Higgs sector is discussed

in refs. [16, 17].

For the MSSM with real parameters (rMSSM) the status of higher-order corrections to

the masses and mixing angles in the Higgs sector is quite advanced. The complete one-loop

result within the rMSSM is known [18 – 21]. The by far dominant one-loop contribution is

the O(αt) term due to top and stop loops (αt ≡ h2
t /(4π), ht being the top-quark Yukawa

coupling). The computation of the two-loop corrections has meanwhile reached a stage

where all the presumably dominant contributions are available [22 – 36]. In particular,

the O(αtαs), O(α2
t ), O(αbαs), O(αtαb) and O(α2

b) contributions to the self-energies are

known for vanishing external momenta. For the (s)bottom corrections, which are mainly

relevant for large values of tan β, an all-order resummation of the tan β-enhanced term

of O(αb(αs tan β)n) is performed [37 – 40]. The remaining theoretical uncertainty on the

lightest CP-even Higgs boson mass has been estimated to be below ∼ 3 GeV [41 – 43]. The

above calculations have been implemented into public codes. The program FeynHiggs [23,

44 – 46] is based on the results obtained in the Feynman-diagrammatic (FD) approach [22,

23, 41, 34]. It includes all the above corrections. The code CPsuperH [47] is based on

the renormalization group (RG) improved effective potential approach [36, 35, 26]. Most
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recently a full two-loop effective potential calculation1 (including even the momentum

dependence for the leading pieces) has been published [49]. However, no computer code

is publicly available. Besides the masses in the Higgs sector, also for the couplings of

the rMSSM Higgs bosons to SM bosons and fermions detailed higher-order corrections are

available [50, 37 – 39, 51].

In the case of the MSSM with complex parameters (cMSSM) the higher order correc-

tions have yet been restricted, after the first more general investigations [52], to evaluations

in the effective potential (EP) approach [53, 54] (at one-loop, neglecting the momentum-

dependent effects) and to the RG improved one-loop EP method [55, 56]. The latter

ones have been restricted to the corrections arising from the (s)fermion sector and some

leading logarithmic corrections from the gaugino sector.2 Within the FD approach the

one-loop leading m4
t corrections have been evaluated in ref. [57]. Effects of imaginary parts

of the one-loop contributions to Higgs boson masses and couplings have been considered

in refs. [58 – 60]. Further discussions on the effect of complex phases on Higgs boson masses

and decays can be found in refs. [61 – 64]. A detailed comparison between the two avail-

able computer codes for the cMSSM Higgs-boson sector, FeynHiggs and CPsuperH, will be

performed in a forthcoming publication.

In the present paper we present the complete one-loop evaluation of the Higgs-boson

masses and mixings in the cMSSM (see ref. [65] for preliminary results). The full phase

dependence, the full momentum dependence and the effects of imaginary parts of the Higgs-

boson self-energies are taken consistently into account. Our results are based on the FD

approach using a hybrid renormalization scheme where the masses are renormalized on-

shell, while the DR scheme is applied for tan β and the field renormalizations. The higher-

order self-energy corrections are utilized to obtain wave function normalization factors for

external Higgs bosons and to discuss effective couplings incorporating leading higher-order

effects. We provide numerical examples for the lightest cMSSM Higgs boson, the mass

difference of the heavier neutral Higgses and for the mixing between the three neutral Higgs

bosons. We compare our results with various approximations often made in the literature.

All results are incorporated into the public Fortran code FeynHiggs2.5 [23, 44 – 46].

The rest of the paper is organized as follows. In section 2 we review all relevant sectors

of the cMSSM. Besides the tree-level structure of the Higgs sector, the renormalization

necessary for the one-loop calculations is explained in detail. In section 3 the evaluation

of the one-loop self-energies is presented. The determination of the Higgs-boson masses

from the propagators and of wave function normalization factors and effective couplings

is described. Our numerical analysis is given in section 4. Information about the Fortran

code FeynHiggs2.5 is provided in section 5, more details about installation and use are

1In ref. [48] the symmetry relations affecting higher-order corrections in the MSSM Higgs sector have

been analyzed in detail. It has been shown for those two-loop corrections that are implemented in

FeynHiggs 2.5 that the counterterms arising from multiplicative renormalization preserve SUSY, so that

the existing result is valid without the introduction of additional symmetry-restoring counterterms. It is

not yet clear whether the same is true also for the subleading two-loop corrections obtained in ref. [49].
2The two-loop results of ref. [49] can in principle also be taken over to the cMSSM. However, no explicit

evaluation or computer code based on these results exists.
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given in the appendix. We conclude with section 6.

2. Calculational basis

2.1 The scalar quark sector in the cMSSM

The mass matrix of two squarks of the same flavor, q̃L and q̃R, is given by

Mq̃ =

(

M2
L + m2

q + M2
Z cos 2β(Iq

3 − Qqs
2
w) mq X∗

q

mq Xq M2
q̃R

+ m2
q + M2

Z cos 2βQqs
2
w

)

, (2.1)

with

Xq = Aq − µ∗{cot β, tan β}, (2.2)

where {cot β, tan β} applies for up- and down-type squarks, respectively, the star denotes

a complex conjugation, and tan β ≡ v2/v1. In eq. (2.2) M2
L, M2

q̃R
are real soft SUSY-

breaking parameters, while the soft SUSY-breaking trilinear coupling Aq and the higgsino

mass parameter µ can be complex. As a consequence, in the scalar quark sector of the

cMSSM Nq +1 phases are present, one for each Aq and one for µ, i.e. Nq +1 new parameters

appear. As an abbreviation we will use

ϕXq ≡ arg (Xq) , ϕAq ≡ arg (Aq) . (2.3)

One can trade ϕAq for ϕXq as independent parameter.

The squark mass eigenstates are obtained by the unitary transformation
(

q̃1

q̃2

)

= Uq̃

(

q̃L

q̃R

)

(2.4)

with

Uq̃ =

(

cq̃ sq̃

−s∗q̃ cq̃

)

, Uq̃U
†
q̃ = 1l , (2.5)

The elements of the mixing matrix U can be calculated as

cq̃ =

√

M2
L + m2

q + M2
Z cos 2β(Iq

3 − Qqs2
w) − m2

q̃2

√

m2
q̃1

− m2
q̃2

, (2.6)

sq̃ =
mqX

∗
q

√

M2
L + M2

Z cos 2β(Iq
3 − Qqs2

w) + m2
q − m2

q̃2

√

m2
q̃1

− m2
q̃2

. (2.7)

Here cq̃ ≡ cos θq̃ is real, whereas sq̃ ≡ e−iϕXq sin θq̃ can be complex with the phase

ϕsq̃
= −ϕXq = arg

(

X∗
q

)

. (2.8)

The mass eigenvalues are given by

m2
q̃1,2

= m2
q +

1

2

[

M2
L + M2

q̃R
+ Iq

3M2
Z cos 2β (2.9)

∓
√

[M2
L − M2

q̃R
+ M2

Z cos 2β(Iq
3 − 2Qqs2

w)]2 + 4m2
q|Xq|2

]

, (2.10)

and are independent of the phase of Xq.
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2.2 The chargino / neutralino sector of the cMSSM

The mass eigenstates of the charginos can be determined from the matrix

X =

(

M2

√
2 sin β MW√

2 cos β MW µ

)

. (2.11)

In addition to the higgsino mass parameter µ it contains the soft breaking term M2, which

can also be complex in the cMSSM. The rotation to the chargino mass eigenstates is done

by transforming the original wino and higgsino fields with the help of two unitary 2×2

matrices U and V,

(

χ̃+
1

χ̃+
2

)

= V

(

W̃+

H̃+
2

)

,

(

χ̃−
1

χ̃−
2

)

= U

(

W̃−

H̃−
1

)

. (2.12)

These rotations lead to the diagonal mass matrix

(

m
χ̃±

1

0

0 mχ̃±
2

)

= U∗ XV†. (2.13)

From this relation, it becomes clear that the chargino masses mχ̃±
1

and mχ̃±
2

can be deter-

mined as the (real and positive) singular values of X. The singular value decomposition of

X also yields results for U and V.

A similar procedure is used for the determination of the neutralino masses and mixing

matrix, which can both be calculated from the mass matrix

Y =











M1 0 −MZ sw cos β MZ sw sin β

0 M2 MZ cw cos β MZ cw sin β

−MZ sw cos β MZ cw cos β 0 −µ

MZ sw sin β MZ cw sin β −µ 0











. (2.14)

This symmetric matrix contains the additional complex soft-breaking parameter M1. The

diagonalization of the matrix is achieved by a transformation starting from the original

bino/wino/higgsino basis,















χ̃0
1

χ̃0
2

χ̃0
3

χ̃0
4















= N















B̃0

W̃ 0

H̃0
1

H̃0
2















,















mχ̃0
1

0 0 0

0 mχ̃0
2

0 0

0 0 mχ̃0
3

0

0 0 0 mχ̃0
4















= N∗ Y N†. (2.15)

The unitary 4×4 matrix N and the physical neutralino masses again result from a numerical

singular value decomposition of Y. The symmetry of Y permits the non-trivial condition

of using only one matrix N for its diagonalization, in contrast to the chargino case shown

above.
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2.3 The cMSSM Higgs potential

The Higgs potential VH contains the real soft breaking terms m̃2
1 and m̃2

2 (with m2
1 ≡

m̃2
1 + |µ|2, m2

2 ≡ m̃2
2 + |µ|2), the potentially complex soft breaking parameter m2

12, and the

U(1) and SU(2) coupling constants g1 and g2:

VH = m2
1H

∗
1iH1i + m2

2H
∗
2iH2i − εij(m2

12H1iH2j + m2
12

∗
H∗

1iH
∗
2j)

+ 1
8(g2

1 + g2
2)(H

∗
1iH1i − H∗

2iH2i)
2 + 1

2g2
2 |H∗

1iH2i|2. (2.16)

The indices {i, j} = {1, 2} refer to the respective Higgs doublet component (summation

over i and j is understood), and ε12 = 1. The Higgs doublets are decomposed in the

following way,

H1 =

(

H11

H12

)

=

(

v1 + 1√
2
(φ1 − iχ1)

−φ−
1

)

,

H2 =

(

H21

H22

)

= eiξ

(

φ+
2

v2 + 1√
2
(φ2 + iχ2)

)

. (2.17)

Besides the vacuum expectation values v1 and v2, eq. (2.17) introduces a possible new

phase ξ between the two Higgs doublets. Using this decomposition, VH can be rearranged

in powers of the fields,

VH = · · · − Tφ1
φ1 − Tφ2

φ2 − Tχ1
χ1 − Tχ2

χ2+

+ 1
2

(

φ1, φ2, χ1, χ2

)

Mφφχχ











φ1

φ2

χ1

χ2











+
(

φ−
1 , φ−

2

)

Mφ±φ±

(

φ+
1

φ+
2

)

+ · · · , (2.18)

where the coefficients of the linear terms are called tadpoles and those of the bilinear terms

are the mass matrices Mφφχχ and Mφ±φ± . The tadpole coefficients read

Tφ1
= −

√
2(m2

1v1 − cos ξ′|m2
12|v2 + 1

4(g2
1 + g2

2)(v
2
1 − v2

2)v1), (2.19a)

Tφ2
= −

√
2(m2

2v2 − cos ξ′|m2
12|v1 − 1

4(g2
1 + g2

2)(v
2
1 − v2

2)v2), (2.19b)

Tχ1
=

√
2 sin ξ′|m2

12|v2 = −Tχ2

v2

v1
, (2.19c)

with ξ′ ≡ ξ + arg(m2
12).

With the help of a Peccei-Quinn transformation [66] µ and m2
12 can be redefined [67]

such that the complex phase of m2
12 vanishes. In the following we will therefore treat m2

12

as a real parameter, which yields

|m2
12| = m2

12, ξ′ = ξ. (2.20)
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The real, symmetric 4×4-matrix Mφφχχ and the hermitian 2×2-matrix Mφ±φ± contain

the following elements,

Mφφχχ =

(

Mφ Mφχ

M†
φχ Mχ

)

, (2.21a)

Mφ =

(

m2
1 + 1

4(g2
1 + g2

2)(3v
2
1 − v2

2) − cos ξ m2
12 − 1

2 (g2
1 + g2

2)v1v2

− cos ξ m2
12 − 1

2(g2
1 + g2

2)v1v2 m2
2 + 1

4(g2
1 + g2

2)(3v
2
2 − v2

1)

)

, (2.21b)

Mφχ =

(

0 sin ξ m2
12

− sin ξ m2
12 0

)

, (2.21c)

Mχ =

(

m2
1 + 1

4(g2
1 + g2

2)(v
2
1 − v2

2) − cos ξ m2
12

− cos ξ m2
12 m2

2 + 1
4(g2

1 + g2
2)(v

2
2 − v2

1)

)

, (2.21d)

Mφ±φ± =

(

m2
1 + 1

4g2
1(v

2
1 − v2

2) + 1
4g2

2(v2
1 + v2

2) −eiξm2
12 − 1

2g2
2v1v2

−e−iξm2
12 − 1

2g2
2v1v2 m2

2 + 1
4g2

1(v
2
2 − v2

1) + 1
4g2

2(v
2
1 + v2

2)

)

.

(2.21e)

The non-vanishing elements of Mφχ lead to CP-violating mixing terms in the Higgs poten-

tial between the CP-even fields φ1 and φ2 and the CP-odd fields χ1 and χ2 if ξ 6= 0. The

mass eigenstates in lowest order follow from unitary transformations on the original fields,










h

H

A

G











= Un(0) ·











φ1

φ2

χ1

χ2











,

(

H±

G±

)

= Uc(0) ·
(

φ±
1

φ±
2

)

. (2.22)

The matrices Un(0) and Uc(0) transform the neutral and charged Higgs fields, respectively,

such that the resulting mass matrices

Mdiag
hHAG = Un(0)MφφχχU

†
n(0) and Mdiag

H±G± = Uc(0)Mφ±φ±U†
c(0) (2.23)

are diagonal in the basis of the transformed fields. The new fields correspond to the three

neutral Higgs bosons h, H and A, the charged pair H± and the Goldstone bosons G and

G±.

The lowest-order mixing matrices can be determined from the eigenvectors of Mφφχχ

and Mφ±φ± , calculated under the additional condition that the tadpole coefficients (2.19)

must vanish in order that v1 and v2 are indeed stationary points of the Higgs potential.

This automatically requires ξ = 0, which in turn leads to a vanishing matrix Mφχ and a

real, symmetric matrix Mφ±φ± . Therefore, no CP-violation occurs in the Higgs potential

at the lowest order, and the corresponding mixing matrices can be parametrized by real

mixing angles as

Un(0) =











− sinα cos α 0 0

cos α sinα 0 0

0 0 − sinβn cos βn

0 0 cos βn sin βn











, Uc(0) =

(

− sinβc cos βc

cos βc sin βc

)

. (2.24)
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The mixing angles α, βn and βc can be determined from the requirement that this trans-

formation results in diagonal mass matrices for the physical fields. It is necessary, however,

to determine the elements of the mass matrices without inserting the explicit form of the

mixing angles and keeping the dependence on the complex phase ξ, since these expressions

will be needed for the renormalization of the Higgs potential and the calculation of the

tadpole and mass counterterms at one-loop order.

2.4 Higgs mass terms and tadpoles

In order to specify our notation and the conventions used in this paper we write out the

Higgs mass terms and tadpole terms in detail. The terms in VH , expressed in the mass

eigenstate basis, which are linear or quadratic in the fields are denoted as follows,

VH = const. − Th · h − TH · H − TA · A − TG · G

+ 1
2

(

h,H,A,G
)

·











m2
h m2

hH m2
hA m2

hG

m2
hH m2

H m2
HA m2

HG

m2
hA m2

HA m2
A m2

AG

m2
hG m2

HG m2
AG m2

G











·











h

H

A

G











+ (2.25)

+
(

H−, G−
)

·
(

m2
H± m2

H−G+

m2
G−H+ m2

G±

)

·
(

H+

G+

)

+ · · · .

Our notation for the Higgs masses in this paper is such that lowest-order mass parameters

are written in lower case, e.g. m2
h, while loop-corrected masses are written in upper case,

e.g. M2
h .

For the gauge-fixing, affecting terms involving Goldstone fields in eq. (2.25), we have

chosen the ’t Hooft-Feynman gauge. In the renormalization we follow the usual approach

where the gauge-fixing term receives no net contribution from the renormalization transfor-

mations. Accordingly, the counterterms derived below arise only from the Higgs potential

and the kinetic terms of the Higgs fields but not from the gauge-fixing term.

In order to perform the renormalization procedure in a transparent way, we express the

parameters in VH in terms of physical parameters. In total, VH contains eight independent

real parameters: v1, v2, g2
1 , g2

2 , m2
1, m2

2, m2
12 and ξ, which can be replaced by the parameters

MZ , MW , e, mH± (or mA), tan β, Th, TH and TA. Thereby, the coupling constants g1 and

g2 are replaced by the electromagnetic coupling constant e and the weak mixing angle θw

in terms of cw ≡ cos θw = MW /MZ , sw =
√

1 − c2
w,

e = g1 cw = g2 sw, (2.26)

while the Z boson mass MZ and tan β substitute for v1 and v2:

M2
Z = 1

2(g2
1 + g2

2)(v
2
1 + v2

2), tan β =
v2

v1
. (2.27)

The W boson mass is then given by

M2
W =

1

2
g2
2(v

2
1 + v2

2). (2.28)
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The tadpole coefficients in the mass-eigenstate basis follow from the original ones (2.19)

by transforming the fields according to eq. (2.22),

TH =
√

2(−m2
1v1 cos α − m2

2v2 sin α + cos ξ m2
12(v1 sin α + v2 cos α ) (2.29a)

− 1
4(g2

1 + g2
2)(v

2
1 − v2

2)(v1 cos α − v2 sin α )),

Th =
√

2(+m2
1v1 sin α − m2

2v2 cos α + cos ξ m2
12(v1 cos α − v2 sin α ) (2.29b)

+ 1
4(g2

1 + g2
2)(v

2
1 − v2

2)(v1 sinα + v2 cos α )),

TA = −
√

2 sin ξ m2
12(v1 cos βn + v2 sin βn), (2.29c)

TG = − tan(β − βn)TA. (2.29d)

Using eqs. (2.26) – (2.29) the original parameters can be expressed in terms of e, tan β,

MZ , MW , Th, TH , TA and either the mass of the neutral A boson, mA, or the mass of the

charged Higgs boson, mH± (it should be noted that eqs. (2.29a)–(2.29d) yield only three

independent relations because of the linear dependence of TG on TA). The masses mA and

mH± are related to the original parameters by

m2
A = m2

1 sin2 βn + m2
2 cos2 βn + sin 2βn cos ξ m2

12

− cos 2βn
1
4(g2

1 + g2
2)(v2

1 − v2
2), (2.30a)

m2
H± = m2

1 sin2 βc + m2
2 cos2 βc + sin 2βc cos ξ m2

12

− cos 2βc
1
4(g2

1 + g2
2)(v

2
1 − v2

2) + 1
2g2

2(v1 cos βc + v2 sin βc)
2 . (2.30b)

Choosing mA as the independent parameter yields the following relations,

v1 =

√
2 cos β sw cw MZ

e
(2.31)

v2 =

√
2 sin β sw cw MZ

e
(2.32)

g1 = e/cw (2.33)

g2 = e/sw (2.34)

m2
1 = −1

2
M2

Z cos(2β) + m2
A sin2 β/

(

cos2(β − βn)
)

+

[

eTh cos βn

2cwswMZ
(cos β cos βn sin α + sinβ(cos α cos βn + 2 sin α sin βn))

− eTH cos βn

2cwswMZ
(cos(α + β) cos βn + 2cos α sin β sin βn)

]

/
(

cos2(β − βn)
)

(2.35)

m2
2 =

1

2
M2

Z cos(2β) + m2
A cos2 β/

(

cos2(β − βn)
)

−
[

eTH sin βn

2cwswMZ
(sin α sin β sin βn + cos β(2 cos βn sin α − cos α sin βn))

+
eTh sinβn

2cwswMZ
(2 cos α cos β cos βn + sin(α + β) sin βn)

]

/
(

cos2(β − βn)
)

(2.36)

m2
12 =

√

(f2
m + f2

s ) (2.37)

sin ξ → fs/
√

f2
m + f2

s (2.38)

cos ξ → fm/
√

f2
m + f2

s , (2.39)
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where

fm =

[

1

2
m2

A sin 2β +
eTh

4cwswMZ
(cos(β + α) + cos(β − α) cos(2βn))

+
eTH

4cwswMZ
(sin(β + α) − sin(β − α) cos(2βn))

]

/
(

cos2(β − βn)
)

, (2.40)

fs = − eTA

2swcwMZ cos(β − βn)
. (2.41)

We now give the bilinear terms of eq. (2.25) in this basis, expressed in terms of mA or

mH± , depending on which parameter leads to more compact expressions. For the charged

Higgs sector this yields, apart from mH± itself,

m2
H−G+ = −m2

H± tan(β − βc) (2.42a)

− e

2MZswcw
TH sin(α − βc)/ cos(β − βc)

− e

2MZswcw
Th cos(α − βc)/ cos(β − βc)

− e

2MZswcw
iTA/ cos(β − βn),

m2
G−H+ = (m2

H−G+)∗, (2.42b)

m2
G± = m2

H± tan2(β − βc)

− e

2MZswcw
TH cos(α + β − 2βc)/ cos2(β − βc) (2.42c)

+
e

2MZswcw
Th sin(α + β − 2βc)/ cos2(β − βc). (2.42d)

The neutral mass matrix is more easily parametrized by mA, as can be seen from the

2×2 sub-matrix of the A and G bosons:

m2
AG = −m2

A tan(β − βn) (2.43a)

− e

2MZswcw
TH sin(α − βn)/ cos(β − βn)

− e

2MZswcw
Th cos(α − βn)/ cos(β − βn),

m2
G = m2

A tan2(β − βn) (2.43b)

− e

2MZswcw
TH cos(α + β − 2βn)/ cos2(β − βn)

+
e

2MZswcw
Th sin(α + β − 2βn)/ cos2(β − βn). (2.43c)

The CP-violating mixing terms connecting the h-/H- and the A-/G-sector are

m2
hA =

e

2MZswcw
TA sin(α − βn)/ cos(β − βn), (2.44a)

m2
hG =

e

2MZswcw
TA cos(α − βn)/ cos(β − βn), (2.44b)

m2
HA = −m2

hG, (2.44c)

m2
HG =

e

2MZswcw
TA sin(α − βn)/ cos(β − βn). (2.44d)
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Finally, the terms involving the CP-even h and H bosons read:

m2
h = M2

Z sin2(α + β) (2.45a)

+ m2
A cos2(α − β)/ cos2(β − βn)

+
e

2MZswcw
TH cos(α − β) sin2(α − βn)/ cos2(β − βn)

+
e

2MZswcw
Th

1

2
sin(α − βn)(cos(2α − β − βn) + 3 cos(β − βn))/ cos2(β − βn),

m2
hH = −M2

Z sin(α + β) cos(α + β) (2.45b)

+ m2
A sin(α − β) cos(α − β)/ cos2(β − βn)

+
e

2MZswcw
TH sin(α − β) sin2(α − βn)/ cos2(β − βn)

− e

2MZswcw
Th cos(α − β) cos2(α − βn)/ cos2(β − βn),

m2
H = M2

Z cos2(α + β) (2.45c)

+ m2
A sin2(α − β)/ cos2(β − βn)

+
e

2MZswcw
TH

1

2
cos(α − βn)(cos(2α − β − βn) − 3 cos(β − βn))/ cos2(β − βn)

− e

2MZswcw
Th sin(α − β) cos2(α − βn)/ cos2(β − βn).

2.5 Masses and mixing angles in lowest order

The masses and mixing angles in lowest order follow from the minimization of the Higgs

potential. As mentioned above, this leads to the requirement that the tadpole coefficients

T{h,H,A} and all non-diagonal entries of the mass matrices in eqs. (2.42)–(2.45) must vanish

(the tadpole coefficient TG vanishes automatically if TA = 0 holds). In particular, the

condition TA = 0 implies that the complex phase ξ has to vanish, see eqs. (2.38)–(2.41), so

that the Higgs sector in lowest order is CP-conserving. As a consequence, the well-known

lowest-order results of the rMSSM are recovered from eqs. (2.42)–(2.45).

It follows from eqs. (2.42a) and (2.43a) that the mixing angles have to obey

βc = βn = β. (2.46)

The lowest-order results for the Higgs masses can in principle be obtained from eqs. (2.45a)

and (2.45c) after the mixing angle α has been determined from eq. (2.45b) by requiring

that the right-hand side of the equation vanishes. More conveniently the Higgs masses can

be determined by diagonalizing the 2 × 2 matrix in the φ1–φ2 basis, which corresponds to

the entries (2.45) of the matrix of the neutral Higgs bosons in eq. (2.25) with α set to zero.

The lowest-order masses read

{m2
h,m2

H} =
1

2

(

m2
A + M2

Z ∓
√

(m2
A + M2

Z)2 − 4m2
AM2

Z cos2 2β

)

. (2.47)

For the mixing angle α one obtains

α = arctan

[ −(m2
A + M2

Z) sin β cos β

M2
Z cos2 β + m2

A sin2 β − m2
h

]

, − π

2
< α < 0 . (2.48)
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Finally, combining eqs. (2.30) and (2.46) relates the remaining masses mA and mH± with

each other,

m2
H± = m2

A + c2
wM2

Z = m2
A + M2

W . (2.49)

Depending on which of the masses mH± and mA is chosen as independent input parameter,

the other mass can be determined from eq. (2.49). Since the CP-violating mixing in the

neutral Higgs sector implies that the CP-odd A boson is no longer a mass eigenstate in

higher orders, we use the charged Higgs mass mH± as input parameter for our analysis of

the cMSSM.

2.6 Renormalization of the Higgs potential

We focus here on the renormalization needed for evaluating the complete one-loop cor-

rections to the Higgs-boson masses and effective couplings (the latter corresponding to

effective mixing angles) in the cMSSM. In our numerical analysis below we will also in-

clude two-loop corrections obtained within the FD approach, which up to now are only

known for the rMSSM [22, 23, 41] (the renormalization of the relevant one-loop contri-

butions is described in refs. [22, 23, 41, 42]). Also included will be the leading resummed

corrections from the (s)bottom sector [37 – 39], which have been obtained in the cMSSM.

In order to derive the counterterms entering the one-loop corrections to the Higgs-boson

masses and effective couplings we renormalize the parameters appearing in the linear and

bilinear terms of the Higgs potential,

M2
Z → M2

Z + δM2
Z , Th → Th + δTh,

M2
W → M2

W + δM2
W , TH → TH + δTH ,

Mφφχχ → Mφφχχ + δMφφχχ, TA → TA + δTA,

Mφ±φ± → Mφ±φ± + δMφ±φ± , tan β → tan β (1 + δtanβ ). (2.50)

We express the counterterms in the mass-eigenstate basis of the lowest-order Higgs fields.

While the parameter β is renormalized, the mixing angles βn and βc (and also α) need

not be renormalized. In carrying out the renormalization transformations it is therefore

necessary to distinguish β from βn and βc (as we have done in (2.42)–(2.45)), i.e. eq. (2.46)

should only be applied after the renormalization transformations.

For the counterterms arising from the mass matrices we use the definitions

δMhHAG = Un(0) δMφφχχU
†
n(0) =















δm2
h δm2

hH δm2
hA δm2

hG

δm2
hH δm2

H δm2
HA δm2

HG

δm2
hA δm2

HA δm2
A δm2

AG

δm2
hG δm2

HG δm2
AG δm2

G















, (2.51)

δMH±G± = Uc(0) δMφ±φ±U†
c(0) =

(

δm2
H± δm2

H−G+

δm2
G−H+ δm2

G±

)

. (2.52)
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It should be noted that we need only seven independent counterterms in the Higgs sector,

δm2
H± , δM2

Z , δM2
W , δTh, δTH , δTA and δ tan β. This is due to the fact that in the expres-

sions for the mass counterterms the renormalization of the electric charge, δZe, drops out

at the one-loop level. Inserting the counterterms introduced in eq. (2.50) and applying the

zeroth order relations T{h,H,A} = 0 and βn = βc = β in the coefficients of the first-order

expressions yields for the CP-even part of the Higgs sector

δm2
h = δm2

A cos2(α − β) + δM2
Z sin2(α + β) (2.53a)

+
e

2MZswcw
(δTH cos(α − β) sin2(α − β) + δTh sin(α − β)(1 + cos2(α − β)))

+ δtanβ sin β cos β (m2
A sin 2(α − β) + M2

Z sin 2(α + β)),

δm2
hH =

1

2
(δm2

A sin 2(α − β) − δM2
Z sin 2(α + β)) (2.53b)

+
e

2MZswcw
(δTH sin3(α − β) − δTh cos3(α − β))

− δtanβ sin β cos β (m2
A cos 2(α − β) + M2

Z cos 2(α + β)),

δm2
H = δm2

A sin2(α − β) + δM2
Z cos2(α + β) (2.53c)

− e

2MZswcw
(δTH cos(α − β)(1 + sin2(α − β)) + δTh sin(α − β) cos2(α − β))

− δtanβ sin β cos β (m2
A sin 2(α − β) + M2

Z sin 2(α + β)),

which has the same form as for the rMSSM.

For the CP-odd part we obtain

δm2
AG =

e

2MZswcw
(−δTH sin(α − β) − δTh cos(α − β)) − δtanβ m2

A sinβ cos β , (2.53d)

δm2
G =

e

2MZswcw
(−δTH cos(α − β) + δTh sin(α − β)), (2.53e)

which again recovers the result of the rMSSM.

For the counterterms arising from the CP-violating mixing terms we obtain

δm2
hA = +

e

2MZswcw
δTA sin(α − β), (2.53f)

δm2
hG = +

e

2MZswcw
δTA cos(α − β), (2.53g)

δm2
HA = −δm2

hG, (2.53h)

δm2
HG = δm2

hA. (2.53i)

Finally, the counterterms arising from the mass matrix of the charged Higgs bosons

read

δm2
H−G+ =

e

2MZswcw
(−δTH sin(α − β) − δTh cos(α − β) − i δTA), (2.53j)

− δtanβ m2
H± sinβ cos β ,

δm2
G−H+ = (δm2

H−G+)∗, (2.53k)

δm2
G± =

e

2MZswcw
(−δTH cos(α − β) + δTh sin(α − β)). (2.53l)
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As mentioned above, we use mH± as independent input parameter. The counterterm

δm2
A in the formulas above is therefore a dependent quantity, which has to be expressed in

terms of δm2
H± using

δm2
A = δm2

H± − δM2
W , (2.54)

which follows from eq. (2.49).

For the field renormalization, which is necessary in order to obtain finite Higgs self-

energies for arbitrary values of the external momentum, we choose to give each Higgs

doublet one renormalization constant,

H1 → (1 + 1
2δZH1

)H1, H2 → (1 + 1
2δZH2

)H2. (2.55)

In the mass eigenstate basis, the field renormalization matrices read














h

H

A

G















→















1 + 1
2δZhh

1
2δZhH

1
2δZhA

1
2δZhG

1
2δZhH 1 + 1

2δZHH
1
2δZHA

1
2δZHG

1
2δZhA

1
2δZHA 1 + 1

2δZAA
1
2δZAG

1
2δZhG

1
2δZHG

1
2δZAG 1 + 1

2δZGG















·















h

H

A

G















(2.56a)

and
(

H+

G+

)

→
(

1 + 1
2δZH+H−

1
2δZH−G+

1
2δZG−H+ 1 + 1

2δZG+G−

)

·
(

H+

G+

)

, (2.56b)

(

H−

G−

)

→
(

1 + 1
2δZH+H−

1
2δZG−H+

1
2δZH−G+ 1 + 1

2δZG+G−

)

·
(

H−

G−

)

. (2.56c)

The renormalization according to eq. (2.55) yields the following expressions for the

field renormalization constants in eq. (2.56):

δZhh = sin2α δZH1
+ cos2α δZH2

, (2.57a)

δZAA = sin2β δZH1
+ cos2β δZH2

, (2.57b)

δZhH = sin α cos α (δZH2
− δZH1

), (2.57c)

δZAG = sin β cos β (δZH2
− δZH1

), (2.57d)

δZHH = cos2α δZH1
+ sin2α δZH2

, (2.57e)

δZGG = cos2β δZH1
+ sin2β δZH2

, (2.57f)

δZH−H+ = sin2β δZH1
+ cos2β δZH2

, (2.57g)

δZH−G+ = δZG−H+ = sin β cos β (δZH2
− δZH1

), (2.57h)

δZG−G+ = cos2β δZH1
+ sin2β δZH2

. (2.57i)

For the field renormalization constants of the CP-violating self-energies it follows,

δZhA = δZhG = δZHA = δZHG = 0, (2.58)

which is related to the fact that the Higgs potential is CP-conserving in lowest order and

Goldstone bosons decouple.
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2.7 Renormalization conditions

We determine the one-loop counterterms by requiring the following renormalization condi-

tions. The SM gauge bosons and the charged Higgs boson are renormalized on-shell,

Re Σ̂ZZ(M2
Z) = 0, Re Σ̂WW (M2

W ) = 0, Re Σ̂H+H−(M2
H±) = 0 , (2.59)

where the gauge-boson self-energies are to be understood as the transverse parts of the full

self-energies. For the mass counterterms, eq. (2.59) yields

δM2
Z = ReΣZZ(M2

Z), δM2
W = ReΣWW (M2

W ), δm2
H± = ReΣH+H−(M2

H±) . (2.60)

It should be noted that eqs. (2.59), (2.60) are strict one-loop conditions. Beyond one-loop

order we define the mass of an unstable particle according to the real part of its complex

pole, see the discussion in section 3.4 below.

The results for the self-energies can be decomposed as usual in terms of standard scalar

one-loop integrals. Because of the appearance of complex phases, the coefficients of these

loop integrals could in principle be complex. We have explicitly verified that this is not

the case, i.e. the complex parameters appear in the results for the self-energies only in

combinations where the imaginary parts cancel out. As a consequence, the only source for

imaginary parts in the results for the self-energies are the loop integrals, as in the case of

the rMSSM.

As the tadpole coefficients are required to vanish, their counterterms follow from

T{h,H,A}(1) + δT{h,H,A} = 0 , (2.61)

where T{h,H,A}(1) denote the one-loop contributions to the respective Higgs tadpole graphs:

δTh = −Th(1), δTH = −TH (1), δTA = −TA(1). (2.62)

Concerning the field renormalization and the renormalization of tan β, we adopt the

DR scheme,

δZH1
= δZDR

H1
= −

[

ReΣ′
HH |α=0

]div
, (2.63a)

δZH2
= δZDR

H2
= −

[

ReΣ′
hh |α=0

]div
, (2.63b)

δtanβ =
1

2
(δZH2

− δZH1
) = δtanβ DR (2.63c)

i.e. the renormalization constants in eqs. (2.63) contribute only via divergent parts.

In eqs. (2.63) the short-hand notation f ′(p2) ≡ d f(p2)/(d p2) has been used. As default

value of the renormalization scale we have chosen in this paper µDR = mt.

The DR renormalization of the parameter tan β, which is manifestly process-

independent, is convenient since there is no obvious relation of this parameter to a

specific physical observable that would favor a particular on-shell definition. Further-

more, the DR renormalization of tan β has been shown to yield stable numerical re-

sults [19, 45, 68]. This scheme is also gauge-independent at the one-loop level within

the class of Rξ gauges [68].
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The field renormalization constants completely drop out in the determination of the

Higgs-boson masses at one-loop order. They only enter via residual higher-order effects as

a consequence of the iterative numerical determination of the propagator poles described

in section 3.4 below. The DR scheme for the field renormalization constants is convenient

in order to avoid the possible occurrence of unphysical threshold effects. Higgs bosons

appearing as external particles in a physical process of course have to obey proper on-shell

conditions. This issue will be discussed in section 3.5.

3. Higgs boson masses and mixings at higher orders

3.1 Calculation of the renormalized self-energies

At the one-loop level, the renormalized self-energies, Σ̂(p2), can now be expressed through

the unrenormalized self-energies, Σ(p2), the field renormalization constants and the mass

counterterms. As explained above, the counterterms arise from the Higgs potential and the

kinetic terms, while the gauge-fixing term does not yield a counterterm contribution. The

renormalization prescription of the gauge-fixing term induces counterterm contributions

in the ghost sector, see e.g. ref. [69] for further details. The counterterms from the ghost

sector, however, contribute to the Higgs-boson self-energies only from two-loop order on.

The renormalized self-energies read for the CP-even part,

Σ̂hh(p2) = Σhh(p2) + δZhh(p2 − m2
h) − δm2

h, (3.1a)

Σ̂hH(p2) = ΣhH(p2) + δZhH(p2 − 1
2(m2

h + m2
H)) − δm2

hH , (3.1b)

Σ̂HH(p2) = ΣHH(p2) + δZHH(p2 − m2
H) − δm2

H , (3.1c)

and the CP-odd part,

Σ̂AA(p2) = ΣAA(p2) + δZAA(p2 − m2
A) − δm2

A, (3.1d)

Σ̂AG(p2) = ΣAG(p2) + δZAG(p2 − 1
2m2

A) − δm2
AG, (3.1e)

Σ̂GG(p2) = ΣGG(p2) + δZGGp2 − δm2
G. (3.1f)

The CP-violating self-energies read (using eq. (2.58))

Σ̂hA(p2) = ΣhA(p2) − δm2
hA, (3.1g)

Σ̂hG(p2) = ΣhG(p2) − δm2
hG, (3.1h)

Σ̂HA(p2) = ΣHA(p2) − δm2
HA, (3.1i)

Σ̂HG(p2) = ΣHG(p2) − δm2
HG (3.1j)

while for the self-energies in the charged sector one obtains

Σ̂H−H+(p2) = ΣH−H+(p2) + δZH−H+(p2 − m2
H±) − δm2

H± , (3.1k)

Σ̂H−G+(p2) = ΣH−G+(p2) + δZH−G+(p2 − 1
2m2

H±) − δm2
H−G+ , (3.1l)

Σ̂G−H+(p2) = Σ̂∗
H−G+(p2), (3.1m)

Σ̂G−G+(p2) = ΣG−G+(p2) + δZG−G+p2 − δm2
G± . (3.1n)
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ν̃{e,µ,τ} f̃1, f̃2

ν{e,µ,τ}

ν{e,µ,τ}

f

f

ν̃{e,µ,τ}

ν̃{e,µ,τ}

f̃1, f̃2

f̃1, f̃2

H±, G±
W±

χ̃±
1 , χ̃±

2

χ̃±
1 , χ̃±

2

H±

H±

G±

H±

G±

G±

u±

u±

W±

W±

H±

W±

G±

W±

H±

W±

G±

W±
h, H,A, G Z

χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4

χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4

h, H, A, G

h, H, A, G

uZ

uZ

Z

Z

h, H, A,G

Z

Figure 1: Generic Feynman diagrams for the h, H , A, G self-energies (f = {e, µ, τ , d, s, b, u, c,

t} ). Corresponding diagrams for the Z boson self-energy are obtained by replacing the external

Higgs boson by a Z boson.

The generic Feynman diagrams for the one-loop contribution to the Higgs and gauge-

boson self-energies are shown in figures 1, 2. The one-loop tadpole diagrams entering via

the renormalization are generically depicted in figure 3. As usual, all the internal particles

in the one-loop diagrams are tree-level states. This implies in particular that diagrams with

internal Higgs bosons do not involve CP-violating phases. The diagrams and corresponding

amplitudes have been obtained with the program FeynArts [70] and further evaluated with

FormCalc [71]. As regularization scheme we have used differential regularization [72], which

has been shown to be equivalent to dimensional reduction [73] at the one-loop level [71].

Thus the employed regularization preserves SUSY [74, 48].
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ν̃l {l̃, ũ, d̃}1, {l̃, ũ, d̃}2

νl

l

d

u

ν̃l

l̃1, l̃2

ũ1, ũ2

d̃1, d̃2

h, H, A, G H±, G±
Z W±

χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4

χ̃±
1 , χ̃±

2

h, H,A

H±

h, H,A, G

G±

H±, G±

γ, Z

h, H, A,G

W±

γ, Z

W±

uZ

u−

uZ

u+

uγ

u−

uγ

u+

Figure 2: Generic Feynman diagrams for the H±, G± self-energies (l = {e, µ, τ}, d = {d, s, b},
u = {u, c, t} ). Corresponding diagrams for the W boson self-energy are obtained by replacing the

external Higgs boson by a W boson.

f ν̃{e,µ,τ} f̃1, f̃2 H±, G± χ̃±
1 , χ̃±

2

W± u±, uZ h, H,A, G χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4 Z

Figure 3: Generic Feynman diagrams for the h, H , A tadpoles (f = {e, µ, τ , d, s, b, u, c, t}).

In order to obtain accurate predictions for the Higgs-boson masses and mixings, in our

numerical analysis below we will supplement the results for the one-loop Higgs self-energies
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in the cMSSM obtained in this paper with two-loop contributions where the dependence

on the complex phases is partially neglected. The corresponding contributions will be

described in section 3.3.

3.2 Special case: corrections to the charged Higgs-boson mass in the MSSM

without CP-violation

As a consequence of the mixing between the three neutral Higgs bosons in the presence of

CP-violating phases in the Higgs sector, it is convenient to choose the mass of the charged

Higgs boson, mH± , as the second free input parameter in the Higgs sector besides tan β.

In the special case where the complex phases are zero (i.e. the rMSSM), on the other hand,

one conventionally chooses the mass of the CP-odd Higgs boson, mA, as independent input

parameter instead of mH± , so that the predictions for the neutral Higgs-boson masses do

not involve charged Higgs-boson self-energies.

In this case the mass of the charged Higgs-boson can be predicted in terms of the other

parameters and receives a shift from the higher-order contributions. The results obtained

in this paper can easily be applied to the special case of predicting the mass of the charged

Higgs boson in the rMSSM, since the necessary ingredients are a subset of those entering

the prediction for the neutral Higgs-boson masses in the cMSSM.

The charged Higgs boson pole mass is obtained by solving the equation

p2 − m2
H± + Σ̂H+H−(p2) = 0 , (3.2)

where mH± denotes the tree-level mass of the charged Higgs boson, eq. (2.49), and

Σ̂H+H−(p2) is defined in eq. (3.1k). The mass counterterm, δm2
H± , is given in eq. (2.54).

In this approach, where mA is a free input parameter (mA = MA in our notation, since the

tree-level mass mA does not receive higher-order corrections), the counterterm δm2
A can be

fixed by the on-shell condition

Re Σ̂AA(M2
A) = 0 , (3.3)

leading to

δm2
A = ReΣAA(M2

A) . (3.4)

For earlier evaluations of the charged Higgs-boson mass, see refs. [75, 76]. A full one-loop

calculation including a detailed numerical analysis can be found in ref. [77].

3.3 Inclusion of higher-order corrections

The numerical results for the Higgs-sector observables discussed below are based on the

complete one-loop results obtained in this paper within the cMSSM, i.e. for arbitrary com-

plex phases, supplemented by higher-order contributions. The renormalized self-energies

are decomposed as

Σ̂(p2) = Σ̂(1)(p2) + Σ̂(2)(p2) + . . . , (3.5)

where Σ̂(i) denotes the contribution at the ith order.

In addition to the full one-loop contributions to Σ̂(p2), i.e. Σ̂(1)(p2), in the cMSSM

we incorporate an all-order resummation of the tan β-enhanced term of O(αb(αs tan β)n)
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including its phase dependence [37, 38]. Since in the FD approach a result for the two-loop

corrections in the t/t̃ sector including the full phase dependence is not yet available (see

however ref. [61]) we take over the the leading two-loop QCD and electroweak Yukawa

corrections obtained in the rMSSM [23, 41], neglecting the explicit phase dependence at

the two-loop level. All the contributions have been incorporated into the Fortran code

FeynHiggs2.5 [23, 44 – 46], see section 5 below.

3.4 Determination of the masses from the Higgs propagators

In order to obtain the prediction for the Higgs masses beyond lowest order, the poles of

the Higgs propagators have to be determined. Since the propagator poles are located in

the complex plane, we define the physical mass of each particle according to the real part

of the complex pole.

In determining the propagator poles one needs to take into account that the Higgs

bosons mix among themselves, with the Goldstone bosons and with the gauge bosons. For

the neutral Higgs bosons of the MSSM in the case with CP violation the Higgs propagators

will in general receive contributions from the Higgs states h,H,A, the Goldstone boson

G, and the (longitudinal part of the) Z boson. The contributions of G and Z to the

Higgs propagators appear from two-loop order on via terms of the form
(

Σ̂φG(p2)
)2

and

p2
(

Σ̂φZ(p2)
)2

, where φ = h,H,A and Σ̂µ
φZ(pµ) = pµΣ̂φZ(p2). The contributions of G and

Z are related to each other by the usual Slavnov-Taylor identities, ensuring a cancellation

of the unphysical contributions. The mixing contributions with G and Z yield a sub-leading

two-loop contribution (this contribution can be compensated at the propagator poles by a

proper choice of the field renormalization constants, see e.g. ref. [78]). As explained above,

we supplement the one-loop Higgs-boson self-energies with the leading two-loop QCD and

electroweak Yukawa corrections. Accordingly, the Higgs propagator terms induced by the

mixing with G and Z are of the same order as terms that we neglect at the two-loop level.

We will therefore neglect the effects induced by Higgs-boson mixing with G and Z in the

determination of the Higgs-boson masses.3 Analogously, in the charged Higgs sector we

neglect the mixing of H± with G± and W±. While the Higgs mixing with the Goldstone

bosons and the gauge bosons yields subleading two-loop contributions to the Higgs-boson

masses, it should be noted that mixing contributions of this kind can enter in Higgs decays

or production processes already at the one-loop level (for more details, see ref. [79]).

According to the discussion above we can write the propagator matrix of the neutral

Higgs bosons h,H,A as a 3× 3 matrix, ∆hHA(p2). (The program FeynHiggs2.5 allows to

employ also the full 4× 4 propagator matrix of all four scalar states h,H,A,G.) The 3× 3

propagator matrix is related to the 3 × 3 matrix of the irreducible vertex functions by

∆hHA(p2) = −
(

Γ̂hHA(p2)
)−1

, (3.6)

3We have explicitly verified that the numerical contributions of the mixing self-energies of the Higgs

bosons with G and Z are indeed insignificant.
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where

Γ̂hHA(p2) = i
[

p21l − Mn(p
2)

]

, (3.7)

Mn(p2) =







m2
h − Σ̂hh(p2) −Σ̂hH(p2) −Σ̂hA(p2)

−Σ̂hH(p2) m2
H − Σ̂HH(p2) −Σ̂HA(p2)

−Σ̂hA(p2) −Σ̂HA(p2) m2
A − Σ̂AA(p2)






. (3.8)

Inversion of Γ̂hHA(p2) yields for the diagonal Higgs propagators (i = h,H,A)

∆ii(p
2) =

i

p2 − m2
i + Σ̂eff

ii (p2)
, (3.9)

where ∆hh(p2), ∆HH(p2), ∆AA(p2) are the (11), (22), (33) elements of the 3 × 3 matrix

∆hHA(p2), respectively. The structure of eq. (3.9) is formally the same as for the case

without mixing, but the usual self-energy is replaced by the effective quantity Σ̂eff
ii (p2)

which contains mixing contributions of the three Higgs bosons. It reads (no summation

over i, j, k)

Σ̂eff
ii (p2) = Σ̂ii(p

2) − i
2Γ̂ij(p

2)Γ̂jk(p
2)Γ̂ki(p

2) − Γ̂2
ki(p

2)Γ̂jj(p
2) − Γ̂2

ij(p
2)Γ̂kk(p

2)

Γ̂jj(p2)Γ̂kk(p2) − Γ̂2
jk(p

2)
, (3.10)

where the Γ̂ij(p
2) are the elements of the 3 × 3 matrix Γ̂hHA(p2) as specified in eq. (3.7).

For completeness, we also state the expression for the off-diagonal Higgs propagators.

It reads (i 6= j, no summation over i, j, k)

∆ij(p
2) =

Γ̂ijΓ̂kk − Γ̂jkΓ̂ki

Γ̂iiΓ̂jjΓ̂kk + 2Γ̂ijΓ̂jkΓ̂ki − Γ̂iiΓ̂2
jk − Γ̂jjΓ̂2

ki − Γ̂kkΓ̂
2
ij

, (3.11)

where we have dropped the argument p2 of the Γ̂ij(p
2) appearing on right-hand side for

ease of notation.

The complex pole M2 of each propagator is determined as the solution of

M2
i − m2

i + Σ̂eff
ii (M2

i ) = 0. (3.12)

Writing the complex pole as

M2 = M2 − iMΓ, (3.13)

where M is the mass of the particle and Γ its width, and expanding up to first order in Γ

around M2 yields the following equation for M2
i ,

M2
i − m2

i + Re Σ̂eff
ii (M2

i ) +
Im Σ̂eff

ii (M2
i )

(

Im Σ̂eff
ii

)′
(M2

i )

1 +
(

Re Σ̂eff
ii

)′
(M2

i )
= 0. (3.14)

As before, in eq. (3.14) the short-hand notation f ′(p2) ≡ d f(p2)/(d p2) has been used, and

Mi denotes the loop-corrected mass, while mi is the lowest-order mass (i = h,H,A).
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While the Higgs-boson masses M2
i can in principle directly be determined

from eq. (3.14) by means of an iterative procedure (since M2
i appears as argument of

the self-energies in eq. (3.14)), it is often more convenient to determine the mass eigenval-

ues from a diagonalization of the mass matrix in eq. (3.8). In our numerical analysis (and

in the code FeynHiggs2.5) we perform a numerical diagonalization of eq. (3.8) using an

iterative Jacobi-type algorithm [80]. The mass eigenvalues Mi are then determined as the

zeros of the function µ2
i (p

2) − p2, where µ2
i (p

2) is the ith eigenvalue of the mass matrix

in eq. (3.8) evaluated at p2. Insertion of the resulting eigenvalues Mi into eq. (3.14) veri-

fies (to O(Γ)) that each eigenvalue indeed corresponds to the appropriate (complex pole)

solution of the propagator. We define the loop-corrected mass eigenvalues according to

Mh1
≤ Mh2

≤ Mh3
. (3.15)

In our determination of the Higgs-boson masses we take into account all imaginary

parts of the Higgs-boson self-energies (besides the term with imaginary parts appearing

explicitly in eq. (3.14), there are also products of imaginary parts in Re Σ̂eff
ii (M2

i )). The

effects of the imaginary parts of the Higgs-boson self-energies on Higgs phenomenology

can be especially relevant if the masses are close to each other. This has been analyzed

in ref. [58] taking into account the mixing between the two heavy neutral Higgs bosons,

where the complex mass matrix has been diagonalized with a complex mixing angle, re-

sulting in a non-unitary mixing matrix. The effects of imaginary parts of the Higgs-boson

self-energies on physical processes with s-channel resonating Higgs bosons are discussed

in refs. [58 – 60]. In ref. [58] only the one-loop corrections from the t/t̃ sector have been

taken into account for the H–A mixing, analyzing the effects on resonant Higgs produc-

tion at a photon collider. In ref. [59] the full one-loop imaginary parts of the self-energies

have been evaluated for the mixing of the three neutral MSSM Higgs bosons. The effects

have been analyzed for resonant Higgs production at the LHC, the ILC and a photon col-

lider (however, the corresponding effects on the Higgs-boson masses have been neglected).

In ref. [60] the t̃/b̃ one-loop contributions (neglecting the t/b corrections) on the H–A mix-

ing for resonant Higgs production at a muon collider have been discussed. Our calculation

incorporates for the first time the complete effects arising from the imaginary parts of the

one-loop self-energies in the neutral Higgs-boson propagator matrix, including their effects

on the Higgs masses and the Higgs couplings in a consistent way.

As described above, the solution for the Higgs-boson masses in the general case where

the full momentum dependence and all imaginary parts of the Higgs-boson self-energies

are taken into account is numerically quite involved. It is therefore of interest to consider

also approximate methods for determining the Higgs-boson masses (often used in the liter-

ature) and to investigate in how far the results obtained in this way deviate from the full

result. Instead of keeping the full momentum dependence in eq. (3.8), the “p2 on-shell”

approximation consists of setting the arguments of the self-energies appearing in eq. (3.8)

to the tree-level masses according to (i, j = h,H,A)

p2 on-shell approximation:
Σ̂ii(p

2) → Σ̂ii(m
2
i )

Σ̂ij(p
2) → Σ̂ij((m

2
i + m2

j )/2) .
(3.16)
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In this way the Higgs-boson masses can simply be obtained as the eigenvalues of the

(momentum-independent) matrix of eq. (3.8). The “p2 on-shell” approximation has the

benefit that it removes all residual dependencies on the field renormalization constants

that cannot be avoided in an iterative procedure for determining the mass eigenvalues, see

the discussion in section 2.7.

Instead of setting the momentum argument of the renormalized self-energies to the

tree-level masses, in the “p2 = 0” approximation the momentum dependence of the self-

energies is neglected completely (i, j = h,H,A),

p2 = 0 approximation:
Σ̂ii(p

2) → Σ̂ii(0)

Σ̂ij(p
2) → Σ̂ij(0) .

(3.17)

In the “p2 = 0” approximation the masses are identified with the eigenvalues of Mn(0)

(see eq. (3.8)) instead of the true pole masses. This approximation is mainly useful for com-

parisons with effective-potential calculations and the determination of effective couplings

(see below). The matrix Mn(0) is hermitian (and real and symmetric) by construction.

In order to study the impact of the imaginary parts of the Higgs-boson self-energies,

it is useful to compare the full result with the “Im Σ = 0” approximation, which is defined

by performing the replacement

Im Σ = 0 approximation: Σ(p2) → Re Σ(p2) (3.18)

for all Higgs-boson self-energies. Also this approximation results in an hermitian mass

matrix. The comparison of our full result with the “p2 on-shell”, the “p2 = 0” and the

“Im Σ = 0” approximations will be discussed in section 4.

3.5 Amplitudes with external Higgs bosons

In evaluating processes with external (on-shell) Higgs bosons beyond lowest order one has

to account for the mixing between the Higgs bosons in order to ensure that the outgoing

particle has the correct on-shell properties such that the S matrix is properly normalized.

This gives rise to finite wave-function normalization factors.4 For the case of 2× 2 mixing

appearing in the rMSSM for the mixing between the two neutral CP-even Higgs bosons h

and H, which is analogous to the mixing of the photon and Z boson in the Standard Model,

the relevant wave function normalization factors are well-known, see e.g. refs. [21, 81].

An amplitude with an external Higgs boson, i, receives the corrections (i, j = h,H, no

summation over i, j)
√

Ẑi

(

Γi + ẐijΓj

)

(i 6= j) , (3.19)

4The introduction of these factors can in principle be avoided by using a renormalization scheme where

all involved particles obey on-shell conditions from the start, but it is often more convenient to work in a

different scheme like the DR scheme for the field renormalizations described in section 2.6.
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where the Γi,j denote the one-particle irreducible Higgs vertices, and

Ẑi =






1 + Re Σ̂′

ii(p
2) − Re







(

Σ̂ij(p
2)

)2

p2 − m2
j + Σ̂jj(p2)







′ 





−1

∣

∣

∣p2=M2
i

, (3.20)

Ẑij = − Σ̂ij(M
2
i )

M2
i − m2

j + Σ̂jj(M2
i )

. (3.21)

As before mj denotes the tree-level mass, while Mi is the loop-corrected mass.

In the case of the cMSSM, the formulas above need to be extended to the case of

3 × 3 mixing. This can easily be achieved using the results of section 3.4. A vertex with

an external Higgs boson, i, has the form (with i, j, k all different, i, j, k = h,H,A, and no

summation over indices)

√

Ẑi

(

Γi + ẐijΓj + ẐikΓk + . . .
)

, (3.22)

where the ellipsis represents contributions from the mixing with the Goldstone boson and

the Z boson, as discussed above. The finite Z factors are given by

Ẑi =
1

1 +
(

Re Σ̂eff
ii

)′
(M2

i )
, (3.23)

Ẑij =
∆ij(p

2)

∆ii(p2)
∣

∣

∣p2=M2
i

=
Σ̂ij(M

2
i )

(

M2
i − m2

k + Σ̂kk(M
2
i )

)

− Σ̂jk(M
2
i )Σ̂ki(M

2
i )

Σ̂2
jk(M

2
i ) −

(

M2
i − m2

j + Σ̂jj(M
2
i )

)(

M2
i − m2

k + Σ̂kk(M
2
i )

) , (3.24)

where the propagators ∆ii(p
2), ∆ij(p

2) have been given in eqs. (3.9) and (3.11), respec-

tively. Using eq. (3.22) with the Z factors specified in eqs. (3.23), (3.24) and adding to

this expression the mixing contributions of the Higgs bosons with the Goldstone bosons

and the gauge bosons (see the discussion above) yields the correct normalization of the

outgoing Higgs bosons in the S matrix.

For later convenience we define a matrix Z̃n based on the wave function normalization

factors. Its elements are given by (with Ẑii = 1, i, j = h,H,A, and no summation over i)

(Z̃n)ij :=

√

Ẑi Ẑij . (3.25)

Some care is necessary in order to correctly identify the elements (Z̃n)ij (given in terms of

the h,H,A states) with the corresponding mass eigenstates h1, h2, h3. To find the correct

assignment, besides using eq. (3.14) as described above, for mass-degenerate cases we also

compute the matrix Z̃n for all possible permutations of the Higgs bosons involved in the

mixing and choose the permutation which minimizes
∑

ij |(Z̃n)ij − Cij |. Here Cij is the
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(in general non-unitary) mixing matrix resulting from diagonalizing the full mass matrix.5

This procedure results in the matrix Zn that is obtained from the matrix Z̃n by a re-ordering

of its rows. A vertex with an external Higgs boson hi is then given by

(Zn)i1Γh + (Zn)i2ΓH + (Zn)i3ΓA + . . . , (3.26)

where the ellipsis again represents contributions from the mixing with the Goldstone boson

and the Z boson.

3.6 Effective couplings

In a general amplitude with internal Higgs bosons, the structure describing the Higgs part

is given by
∑

ij

Γi ∆ij Γj (3.27)

where the Γi,j are as above the one-particle irreducible Higgs vertices, and the propagators

∆ij are given in eqs. (3.9) and (3.11). For phenomenological analyses it is often convenient

to use approximations of improved-Born type with effective couplings incorporating leading

higher-order effects. There is no unique prescription how to define such effective coupling

terms. One possibility would be to consider the matrix Zn, defined through eqs. (3.25)–

(3.26), as mixing matrix. The elements of the matrix Zn, however, are in general complex,

so that Zn is a non-unitary matrix. Therefore it cannot be interpreted as a rotation matrix.

If one wants to introduce effective couplings by means of a (unitary) rotation matrix, it is

necessary to make further approximations.

A possible choice leading to a unitary rotation matrix is the “p2 = 0” approximation,

which is used in the effective potential approach. As before, we first consider the case of

2 × 2 mixing relevant for the rMSSM. In the “p2 = 0” approximation defined in eq. (3.17)

the momentum dependence in the renormalized self-energies is neglected, Σ̂(p2) → Σ̂(0),

so that the derivative in eq. (3.20) acts only on the p2 term in the propagator factor. In

this limit Ẑi simplifies to [82, 50]

p2 = 0 approximation, 2 × 2 mixing: Ẑi =
1

1 + Ẑ2
ij

. (3.28)

For the mixing between the neutral CP-even Higgs bosons h,H this yields Ẑh = ẐH =

cos2 ∆α. This corresponds to an effective coupling approximation where the tree-level

mixing angle α appearing in the couplings of the neutral CP-even Higgs bosons is replaced

by αeff = α + ∆α [82, 50].

It is easy to verify that for the 3×3 mixing case eq. (3.23) in the “p2 = 0” approximation

simplifies to

p2 = 0 approximation, 3 × 3 mixing: Ẑi =
1

1 + Ẑ2
ij + Ẑ2

ik

, (3.29)

5The matrix C depends of course on the external momentum p2 where it is evaluated. Since the

dependence on p2 is not very pronounced and we need C only to distinguish mass-degenerate cases, we

choose the C evaluated at p2 = M2
h2

since the mass ordering ensures that the second-lightest Higgs boson

is always involved in the degeneracy.
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as a direct generalization of eq. (3.28).

The matrix Zn defined through eqs. (3.25)–(3.26) goes over into a unitary rotation

matrix Rn in this approximation,

p2 = 0 approximation, 3 × 3 mixing: Zn → Rn, Rn =







R11 R12 R13

R21 R22 R23

R31 R32 R33






. (3.30)

The matrix Rn diagonalizes the matrix Mn(0) arising from eq. (3.8) in the “p2 = 0”

approximation. Rn can therefore be used to connect the mass eigenstates h1, h2, h3 with

the original states h,H,A,






h1

h2

h3







p2=0

= Rn ·







h

H

A






, Rn Mn(0)R†

n =







M2
h1,p2=0 0 0

0 M2
h2,p2=0 0

0 0 M2
h3,p2=0






. (3.31)

We will discuss in this paper also the possibility of defining the effective couplings

in the “p2 on-shell” approximation. The unitary matrix Un is then defined such that it

diagonalizes the matrix Re
(

Mn(p2 on-shell)
)

arising from eq. (3.8) in the “p2 on-shell”

approximation and restricting to the real part of the matrix. This yields

p2 on-shell approx., 3×3 mixing:







h1

h2

h3







p2 on−shell

= Un ·







h

H

A






, Un =







U11 U12 U13

U21 U22 U23

U31 U32 U33






,

Un Re
(

Mn(p
2 on-shell)

)

U†
n =







M2
h1,p2 on−shell 0 0

0 M2
h2,p2 on−shell 0

0 0 M2
h3,p2 on−shell






. (3.32)

The elements of Un, which can be chosen to be real, can be used to quantify the extent

of CP-violation. (The same applies to Rn, which is real by construction.) For example, U2
13

can be understood as the CP-odd part in h1, while the combination U2
11 + U2

12 corresponds

to the CP-even part. The unitarity of Un ensures that both parts add up to 1.

The elements of Un (or Rn) can be interpreted as effective couplings of Higgs bosons,

which take into account leading higher-order contributions. As an example, we discuss

here the effective couplings of the neutral MSSM Higgs bosons to SM gauge bosons and

fermions.

Beyond the lowest order in the cMSSM all three neutral Higgs bosons have a CP-

even component, so that all three Higgs bosons have non-vanishing couplings to two gauge

bosons, V V = ZZ,W+W−. The couplings normalized to the SM values are given by

ghiV V = Ui1 sin(β − α) + Ui2 cos(β − α). (3.33)

The coupling of two Higgs bosons to a Z boson, normalized to the SM value, is given by

ghihjZ = Ui3 (Uj1 cos(β − α) − Uj2 sin(β − α))

− Uj3 (Ui1 cos(β − α) − Ui2 sin(β − α)) . (3.34)
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The Bose symmetry forbidding any anti-symmetric derivative coupling of a vector particle

to two identical real scalar fields is respected, ghihiV = 0.

Concerning the decay into light SM fermions, we will compare in section 4 below the

full result based on the wave function normalization factors with the effective coupling

approximation. In the latter approximation, the decay width of hi can be obtained from

the SM decay width of the Higgs boson by multiplying it with

[

(

gS
hiff

)2
+

(

gP
hiff

)2
]

, (3.35)

where

gS
hiuu = (Ui1 cos α + Ui2 sin α)/sβ , gP

hiuu = Ui3 cβ/sβ (3.36)

gS
hidd = (−Ui1 sin α + Ui2 cos α)/cβ , gP

hidd = Ui3 sβ/cβ (3.37)

for up- and down-type quarks, respectively.

The results obtained by using effective couplings for simplified calculations of cross

sections or decay widths at fixed-order perturbation theory are inherently less precise than

those from a full diagrammatic calculation at the same order. If effective couplings are

employed, their limitations should be kept in mind. It will be shown below that for not

too large values of MH± effective couplings evaluated with Un give results closer to the

full calculation of eq. (3.26) for the propagator corrections on external lines than those

evaluated with Rn. On the other hand, it can be shown analytically that the effective

couplings of the lightest Higgs boson evaluated with Un do not decouple to the SM limit

for MH± → ∞. Decoupling can only be achieved employing either the full calculation

of eq. (3.26) or effective couplings evaluated with Rn.

4. Numerical analysis

Our results obtained in this paper extend the known results in the literature in various

ways. The results for the Higgs-boson masses and couplings in the cMSSM available so

far have been restricted to evaluations in the EP approach [53, 54] (at one-loop, neglecting

the momentum dependent effects) and to the RG improved one-loop EP method [55, 56].

In refs. [53, 55, 56] only corrections from the (s)fermion sector and the gaugino sector have

been taken into account, and various non-logarithmic terms and momentum-dependent

corrections have been neglected. A calculation taking into account also contributions from

the gauge-boson and Higgs sector has been performed in ref. [54], however (besides ne-

glecting momentum dependent effects) using the parameter m2
12 (see eq. (2.16)) as input.

Within the FD approach so far only the leading one-loop m4
t corrections had been eval-

uated, using the on-shell renormalization scheme [57]. Effects of imaginary parts of the

one-loop contributions to Higgs masses and couplings have mostly been neglected in the

above results. Some effects induced by products of imaginary parts have been considered

in refs. [58 – 60], see the discussion in section 3.4.

Our results are based on the complete one-loop results in the cMSSM, taking into

account the full dependence on the complex phases, the other MSSM parameters, and the
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external momentum. They involve a consistent treatment of all imaginary parts appearing

in one-loop Higgs-boson self-energies that contribute to the Higgs-boson masses and the

wave-function normalization factors of external Higgs bosons. Our one-loop results are

supplemented by the dominant two-loop corrections in the FD approach, as described

in section 3.3. The higher-order corrected Higgs-boson sector has been evaluated with the

help of the Fortran code FeynHiggs2.5 [23, 44 – 46], see section 5 below.

4.1 Parameters

In the context of a detailed phenomenological analysis of the cMSSM parameter space the

existing constraints on CP-violating parameters from experimental bounds [83, 84] are of

interest. The complex phases appearing in the cMSSM are experimentally constrained by

their contribution to electric dipole moments of heavy quarks [85], of the electron and the

neutron (see refs. [86, 87] and references therein), and of deuterium [88]. While SM contri-

butions enter only at the three-loop level, due to its complex phases the cMSSM can con-

tribute already at one-loop order. Large phases in the first two generations of (s)fermions

can only be accommodated if these generations are assumed to be very heavy [89] or large

cancellations occur [90], see however the discussion in ref. [91]. In the chargino and neu-

tralino sector the three parameters M1, M2 and µ can be complex. However, there are

only two physical complex phases since one of the two phases of M1 and M2 can be rotated

away. One finds that in particular the phase ϕµ is tightly constrained (in the convention

where ϕM2
= 0). The bounds on the phases of the third generation trilinear couplings,

on the other hand, are much weaker. In order to illustrate the possible effects of complex

phases we will show below results for ϕM1
as well as ϕM2

varied over the full parameter

range. We will discuss the impact of the experimental constraints where appropriate. We

treat the gluino mass parameter, which enters the observables discussed below only from

two-loop order on, as real, M3 ≡ mg̃.

Our numerical analysis has been performed for the following set of parameters (if not

indicated differently):

MSUSY = 500 GeV, |At| = |Ab| = |Aτ | = 1000 GeV,

|µ| = 1000 GeV, |M2| = 500 GeV, |M1| = 250 GeV, mg̃ = 500 GeV,

MH± = 150 GeV, tan β = 5, 15, µDR = mt = 171.4 GeV [92]. (4.1)

We do not consider higher values of tan β, which in general enhance the SUSY contributions

to the electric dipole moments.

In order to evaluate the possible size of CP-violating effects in the Higgs sector in a

conservative way we have chosen a relatively low value of MH± . Parts of the investigated

parameter regions are challenged by the Higgs search performed at LEP [2, 3], depending

in particular on the parameters of the t̃ sector. It should be noted, however, that within the

cMSSM the limits from the Higgs search are in general weaker than in the rMSSM, giving

rise even to situations where no experimental lower bound on Mh1
can be established at

all [3, 93, 94].

Our calculation at the one-loop level is completely general, containing all complex

phases. Concerning the numerical analysis, as explained above, we restrict ourselves to low
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or moderate values of tan β. Therefore the effects arising from the b/b̃ sector stay relatively

small. Consequently we do not study the effects of complex phases from this sector, but

focus on the phases of Xt, At, and of the gaugino mass parameters M1 and M2.

4.2 Predictions for the mass and couplings of the lightest Higgs boson

We begin with the predictions for the mass and couplings of the lightest neutral Higgs boson

of the cMSSM, which are of particular interest in view of the existing experimental bounds

and of the prospective high-precision measurement of the mass of a light MSSM Higgs

boson at the LHC and the ILC. We first compare our full result with the approximations

discussed in section 3.4. Furthermore we investigate the effects of the phases of M2 and

M1. We then compare the predictions for the partial decay widths of all three neutral Higgs

bosons to τ leptons based on the wave function normalization factors defined in section 3.5

with the effective coupling approximation.

4.2.1 Comparison of the full result with approximations

In figure 4 the cMSSM prediction for the mass of the lightest neutral Higgs boson, Mh1
, is

shown in the upper two plots, while the lower plot shows the coupling of h1 to gauge bosons.

The results are displayed as a function of the complex phase ϕXt for |Xt| = 700 GeV. The

other parameters are chosen as specified in eq. (4.1). Varying ϕXt leaves the t̃ masses

unchanged, so that the impact of the phase dependence is not masked by the purely

kinematic effect of a change in the t̃ masses. Our full result is compared with various

approximations. In the upper left plot the full result for all sectors of the cMSSM is

compared with the results taking into account only the effects of the f/f̃ sector (dot-dashed)

and from the t/t̃ + b/b̃ sector (dashed). It should be noted that the asymmetry between

the results for Mh1
at ϕXt = 0 and ϕXt = ±π, which amounts to about 8 GeV in this

example, arises both from Xt-dependent one-loop corrections (whereas the leading one-loop

m4
t corrections in the limit MA,MH± À MZ depend only on the absolute value of Xt, see

e.g. ref. [24]) and from two-loop contributions. For the parameters chosen in figure 4 there

is a partial compensation between the phase variation at the one-loop and the two-loop

contributions. The corrections beyond the f/f̃ loops, arising from the chargino/neutralino

sector, the gauge-boson sector and the Higgs sector, can amount up to about 3 GeV.

The f/f̃ contributions are clearly dominated by the contributions of the third generation

quarks and squarks, with a maximum deviation of about 1 GeV for ϕXt ≈ ±π. Effects at

the sub-GeV level may be probed at the LHC and the ILC, where the anticipated precision

for measuring the mass of a light Higgs boson is about 0.2 GeV (LHC) [8] and 0.05 GeV

(ILC) [13 – 15]. For a discussion of theoretical uncertainties from unknown higher-order

corrections and the parametric uncertainties induced by the experimental errors of the

input parameters, see e.g. refs. [41 – 43].

The upper right plot of figure 4 shows the difference between the full result and the

“p2 on-shell”, “p2 = 0” and “Im Σ = 0” approximations defined in eqs. (3.16)–(3.18). The

“p2 = 0” approximation yields results that differ from the full result by up to 1.5 GeV in

this example, while the “p2 on-shell” approximation agrees with the full result to better
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than about 0.5 GeV. As explained above, the imaginary parts in the one-loop Higgs-

boson self-energies arise only from kinematical thresholds, while the complex parameters

enter only in combinations that are real. As a consequence, for the chosen set of SUSY

parameters the self-energies entering the prediction for the lightest cMSSM Higgs mass

develop imaginary parts only from loops involving SM fermions (except the top quark).

The effects of neglecting the imaginary parts are therefore very small in this example, and

the result in the “Im Σ = 0” approximation is indistinguishable in the plot from the full

result.

The coupling of the lightest cMSSM Higgs boson to gauge bosons normalized to

the SM Higgs boson coupling, |gh1V V |2 (obtained using the “p2 on-shell” approximation,

see eq. (3.33)), is shown in the lower plot of figure 4 for the same set of parameters. This

coupling governs the Higgs production cross section in the Higgs-strahlung channel at LEP,

the Tevatron and the ILC as well as the weak-boson fusion cross section at the LHC. The

full result incorporating the contributions from all sectors of the MSSM (full line) differs

from the result based on the f/f̃ sector only (dot-dashed) by up to 5 (10)% in the case of

tan β = 5 (15). The fact that the contribution from the t/t̃ + b/b̃ sector yields a better ap-

proximation of the full result for |gh1V V |2 than the contribution from the whole f/f̃ sector

is due to an accidental cancellation of contributions from different MSSM sectors.

4.2.2 Dependence on the gaugino phases

We now analyze the dependence on the gaugino phases ϕM1
and ϕM2

. In figure 5 the depen-

dence of the lightest cMSSM Higgs-boson mass on ϕM2
is shown. The difference ∆Mh1

:=

Mh1
(all sectors) − Mh1

(f/f̃ sector), which is dominated by the chargino/neutralino contri-

butions, is evaluated for three different values of |M2|, |M2| = 200, 1000, 2000 GeV (solid,

dashed, dot-dashed line). The other parameters are chosen as in eq. (4.1), and all other

complex phases are set to zero. The result including the full momentum dependence is

given by the upper set of curves, while the “p2 = 0” approximation is given by the lower

set. In the left plot we have chosen tan β = 5, in the right one tan β = 15. For the lower

tan β value the effects from the non-sfermionic sector are about 2–3 GeV if the full depen-

dence on the external momentum is taken into account, and about 4 GeV in the “p2 = 0”

approximation (which is used in the effective potential approach). The effect arising from

varying the gaugino phase ϕM2
itself is of O(1 GeV). Both the overall effect from the non-

sfermionic sector and the effect from varying ϕM2
become smaller for larger tan β values

(right plot). The effects are largest for |M2| =O(1 TeV), i.e. for |M2| being of the same

order as |µ|. In this case the gaugino-higgsino mixing in the chargino and neutralino sector,

and correspondingly the couplings of the charginos and neutralinos to the Higgs sector, is

maximized. The effects shown in figure 5 arising from varying ϕM2
should be interpreted

as an upper bound on the possible impact of the phase dependence. The possible effects

from the gaugino phases will be reduced if the existing experimental constraints on these

phases are taken into account, see the discussion above.

We now turn to the effects from varying ϕM1
as shown in figure 6. The parameters

are as in figure 5, but with M2 = 500 GeV and |M1| = 200, 1000, 2000 GeV (solid, dashed,
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Figure 4: Mh1
and |gh1V V |2 are shown as a function of ϕXt

for |Xt| = 700 GeV, tanβ = 5, 15 and

the other parameters as given in eq. (4.1).

dotted line). The size of the effects from the non-sfermion sector is the same as in figure 5.

However, the dependence on ϕM1
is much smaller, being of O(100 MeV).

4.2.3 Decay widths of the neutral Higgs bosons

In this section we compare the predictions for the partial decay widths of all three neu-
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Figure 5: ∆Mh1
:= Mh1

(all sectors) − Mh1
(f/f̃ sector) is shown as a function of ϕM2

for the full

result and the “p2 = 0” approximation. The left plot shows the result for tanβ = 5, while in the

right plot tanβ = 15. |M2| is chosen as 200, 1000, 2000 GeV.

tan β = 5

p2
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Figure 6: ∆Mh1
:= Mh1

(all sectors) − Mh1
(f/f̃ sector) is shown as a function of ϕM1

for the full

result and the “p2 = 0” approximation. The left plot shows the result for tanβ = 5, while in the

right plot tanβ = 15. |M1| is chosen as 200, 1000, 2000 GeV.

tral Higgs bosons to τ leptons based on the wave function normalization factors as given

in eqs. (3.25), (3.26) with the effective coupling approximation (using the “p2 on-shell”

approximation) according to eqs. (3.31), (3.32), and with the “p2 = 0” approximation as
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given in eqs. (3.30), (3.31). In figure 7 we show

Γi,τ := Γ(hi → τ+τ−) and Γ(hi → τ+τ−)R, Γ(hi → τ+τ−)U (4.2)

for i = 1, 2, 3 (upper, middle, lower row), where Γ refers to the full result based on the

wave function normalization factors, and ΓU, ΓR correspond to the effective coupling

approximation evaluated with Un and Rn, respectively. Since we are only interested here

in the comparison of the wave function normalization factors with the effective coupling

approximations, we omit the contributions arising from the mixing of the physical Higgs

states with the Goldstone boson and the Z boson and we also do not take into account

irreducible vertex corrections to the hiτ
+τ− vertices. The results are shown for MH± =

150 GeV and |Xt| = 700 GeV as a function of ϕXt , where the other parameters are chosen

according to eq. (4.1) with tan β = 5 (left) and tan β = 15 (right). As a general feature

it can be observed that ΓU is closer to the full result Γ than ΓR with only few exceptions

(due to accidental numerical cancellations).6 This shows that the effective coupling defined

through Un, eq. (3.32), gives a somewhat better numerical description than the one defined

through Rn, eq. (3.31), as used in the effective potential approach. For tan β = 5 the

deviations between the “p2 = 0” approximation and the full result are mostly at or below

the 5% level, where the largest effects in general occur in the decay width of the lightest

Higgs boson. For tan β = 15 the absolute and relative deviations between the effective

coupling approximation and the full result can be significantly larger in the case of the

lightest Higgs boson. For the decay widths of h1 the full result can differ from the “p2 = 0”

approximation by more than 10%. In particular, in the region where Γ(h1 → τ+τ−) has a

minimum (ϕXt ≈ ±π) the relative deviation between the full result and ΓR reaches more

than 25%. Also in this case the deviation between the full result and ΓU, based on the

“p2 on-shell” approximation, is much smaller. The deviations for h2 and h3 are again at the

level of 5%. For larger values of |Xt| even larger differences between the effective coupling

approximation and the full result can be found.

4.3 Mass difference and mixing of the heavy neutral Higgs bosons

We now turn to the predictions for the masses and the mixing of the heavy neutral Higgs

bosons of the cMSSM. The discovery of heavy Higgs bosons (in addition to a light one)

would clearly establish an enlarged Higgs sector as compared to the SM. In the cMSSM the

two heavy neutral Higgs bosons h2 and h3 are in general relatively close in mass, so that the

mixing induced by the CP-violating phases can give rise to resonance-type effects. We first

analyze the mass difference of the two heavy neutral Higgs bosons, ∆M32 := Mh3
− Mh2

,

in scenarios where the Higgs-boson self-energies can be enhanced by threshold effects. We

then investigate the phase dependence of ∆M32 and discuss in how far this observable can

be employed for distinguishing the cMSSM from the rMSSM. Finally we perform a detailed

analysis of the mixing of h2 and h3 that is induced by the presence of complex phases.

6For large values of MH± due to the non-decoupling effects in ΓU, see the discussion in section 3.6, ΓR

would give results closer to the full evaluation.
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Figure 7: The decay widths Γ(hi → τ+τ−), Γ(hi → τ+τ−)U and Γ(hi → τ+τ−)R (see text) are

shown for i = 1, 2, 3 (upper, middle, lower row) as a function of ϕXt
with |Xt| = 700 GeV. In the

left column tanβ = 5, while for the plots in the right column tanβ = 15. The other parameters are

chosen according to eq. (4.1).

4.3.1 Threshold effects for heavy Higgs bosons

We first analyze the effects of thresholds appearing in the Higgs-boson self-energy diagrams

(e.g. for mA = mt̃1
+ mt̃2

, see the sixth diagram in figure 1) on the masses of the heavy

neutral Higgs bosons. In the first two lines of figure 8 the mass difference ∆M32 := Mh3
−

Mh2
is shown as a function of MH± for tan β = 5 (left) and tan β = 15 (right) for two

different values of the phase of At, ϕAt = 0 (upper row) and ϕAt = π/2 (middle row). The
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other parameters are chosen as in eq. (4.1). We compare the full result (solid lines) with

the “p2 on-shell” (dot-dashed), “p2 = 0” (dashed) and “Im Σ = 0” (dotted) approximations

defined in eqs. (3.16)–(3.18). It can be seen for the full result that the threshold effects

may lead to a significant enhancement of the mass splitting between the states h2 and

h3, so that mass differences in excess of ∆M32 = 10 GeV can occur even for MH± values

in the decoupling region where MH± À MZ . This behaviour is not reproduced in the

“p2 = 0” approximation (which is used in the effective potential approach). On the other

hand, it turns out that the “p2 on-shell” approximation, see eq. (3.16), gives a rather good

approximation to the full result. The remaining deviations stay below the level of 1 GeV.

It should be noted in this context that the sharp peaks displayed in figure 8 would get

smoothened if the effects of finite widths of the internal particles in the Higgs-boson self-

energies were taken into account. A precise prediction directly at threshold would require

a dedicated analysis that is beyond the scope of the present paper.

We now turn to the effects of the imaginary parts of the Higgs-boson self-energies, i.e.

the comparison of the full result with the “Im Σ = 0” approximation as defined in eq. (3.18).

While for the example of the lightest cMSSM Higgs boson, shown in figure 4, the result for

neglected imaginary parts was indistinguishable from the full result, for the mass difference

of the heavy Higgs bosons a difference becomes visible in the two upper lines of figure 8

around the thresholds. The effect is shown in more detail in the lower line of figure 8. In the

lower left plot we show ∆M32 as a function of ϕAt for tan β = 5, 15 and MH± = 1000 GeV.

In the right plot we display ∆M32 as a function of tan β for MH± = 700, 1000 GeV and

ϕAt = π. The other parameters are again those of eq. (4.1). As one can see from the plot,

the difference between the full result and the approximation with neglected imaginary parts

can be as large as about 5 GeV.

4.3.2 Phase dependence of ∆M32

We now analyze the dependence of the mass difference ∆M32 := Mh3
−Mh2

on the complex

phases in more detail, in particular in view of the question whether the detection of a certain

mass difference between the two heavy neutral Higgs bosons could be a direct indication

of non-zero complex phases in the MSSM. In figure 9 we show ∆M32 in the ReXt–Im Xt

plane for tan β = 5 (left) and tan β = 15 (right) for MH± = 150 GeV (upper row) and

MH± = 500 GeV (lower row). The other parameters are given in eq. (4.1).

The results in figure 9 show that the smallest mass differences between Mh3
and Mh2

occur if Xt ≡ At−µ/ tan β is real or has only a relatively small imaginary part. For MH± =

150 GeV and low tan β this happens only around Xt ≈ 1000 GeV, while for higher tan β

three minima are reached for Xt ≈ −1200,−200, 800 GeV. The largest mass differences are

realized for relatively large |Xt|. While for tan β = 5 all possible mass differences occurring

in the ReXt–Im Xt plane are also realized on the real axis, for tan β = 15 the largest mass

differences can only be found for a non-zero imaginary part of Xt.

The qualitative behaviour changes somewhat for MH± = 500 GeV. Again the smallest

mass differences between Mh3
and Mh2

occur for small imaginary parts of Xt. Two minima

are found for tan β = 5. On the other hand, for tanβ = 15 only the region of the Re Xt–

Im Xt parameter space around Xt = 0 results in a small value of ∆M32. The rather
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Figure 8: The mass difference ∆M32 := Mh3
− Mh2

is shown as a function of MH± (upper and

middle rows) and as a function of ϕAt
and tanβ (lower row) for the parameters given in eq. (4.1).

The upper row shows the results for ϕAt
= 0 with tanβ = 5 (left) and tanβ = 15 (right). The

middle row shows ∆M32 for ϕAt
= π/2 with tanβ = 5 (left) and tanβ = 15 (right). The lower row

shows ∆M32 for tanβ = 5, 15 and MH± = 1000 GeV as a function of ϕAt
(left) and for ϕAt

= π,

MH± = 700, 1000 GeV as a function of tanβ (right).

symmetric shape of the plot for tan β = 15 and MH± = 500 GeV around Xt = 0 shows

that in this case the dominant contribution to ∆M32 depends only on the absolute value
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Figure 9: ∆M32 := Mh3
− Mh2

is shown in the Re Xt–ImXt plane for tanβ = 5 (left) and

tan β = 15 (right) for MH± = 150 GeV (upper row) and MH± = 500 GeV (lower row). The other

parameters are as given in eq. (4.1).

|Xt| ≈ |At|. For tan β = 5, on the other hand, the minimum values of ∆M32 are reached

for both Re At 6= 0 and Re Xt 6= 0. Similarly to the case of MH± = 150 GeV and low tan β

we find also for MH± = 500 GeV (both for low and high tan β) that a large mass difference

∆M32 does not necessarily require a non-zero complex phase of Xt. Indeed, for large MH±

all mass differences realized for a parameter point in the complex Xt plane are also realized

on its real axis. This means that the determination of the mass difference ∆M32 alone

will in general not be sufficient to obtain direct information about the size of the complex
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phases. On the other hand, the interpretation of an observed mass difference in terms of

the underlying SUSY parameters will be different in the rMSSM and the cMSSM. Valuable

information for determining the parameters of the cMSSM including their complex phases

can therefore be obtained by combining the mass difference ∆M32 with a suitable set of

observables that exhibit a non-trivial dependence on the complex phases.

We have investigated also the effects of the complex phases of M2 and M1 on the mass

difference ∆M32. The effects stay below the 1 GeV level for most parts of the parame-

ter space.

4.3.3 Mixing of the heavy neutral Higgs bosons

We finally analyze the mixing of the two heavy neutral Higgs bosons. Mixing effects,

especially between the second and the third Higgs boson, can potentially be sizable in the

cMSSM. In ref. [54] it was argued that the phases of the gaugino mass parameters play an

important role in this context.

As explained above, the elements of Un (or Rn) can be used to quantify the extent of

CP-violation. For example, the combination U2
31 + U2

32 can be understood as the CP-even

part in h3, while the component U2
33 corresponds to the CP-odd part. The unitarity of Un

ensures that both parts add up to 1.

We first discuss the CP-conserving case, where U2
33 is either 1 or 0, depending on the

mass ordering of MH and MA (the higher-order corrected masses of the heavy neutral

CP eigenstates). In figure 10 we show the mass difference ∆M32 = Mh3
− Mh2

= |MH −
MA| together with the effective couplings U2

33 (based on the “p2 on-shell” approximation,

see eq. (3.32)) and R2
33 (obtained in the “p2 = 0” approximation, see eq. (3.31)). The three

quantities are given as a function of Xt, which in the CP-conserving case is a real parameter.

We have set MH± = 500 GeV, tan β = 5 (tan β = 15) in the left (right) plot, and the other

parameters are chosen according to eq. (4.1). The change from 1 to 0 in the (33) element

of the rotation matrix should obviously occur at the same value of Xt where the mass

hierarchy of the states H and A is inverted, i.e. where ∆M32 = 0. This correlation between

the masses and the effective couplings is not automatic, however, since the masses have

been calculated using the full higher-order corrections, while as discussed in section 3.6 the

effective couplings can only be obtained using certain approximations. figure 10 shows that

the behaviour of U2
33 with Xt is well matched to the one of ∆M32, i.e. the step in U2

33 occurs

very close to the Xt value where ∆M32 = 0. For R2
33, on the other hand, the behaviour of

the effective coupling significantly differs from the one of the higher-order corrected masses.

This effect is particularly pronounced for small tan β as can be seen in the left plot, where

the value of Xt for which ∆M32 ≈ 0 is reached differs by more than 100 GeV from the

corresponding Xt value for which R2
33 changes from 0 to 1. For tan β = 15 (right plot) the

deviation is smaller but still significant. figure 10 clearly shows that those contributions

which are omitted if effective couplings are constructed using the “p2 = 0” approximation

(as done in the effective potential approach) can be numerically sizable and important

for a physically well-behaved result. We find also in this case (for not too large values

of MH±) that a better numerical description is obtained with effective couplings defined
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Figure 10: The mass difference ∆M32 = |MH − MA| and the effective couplings U2
33 and R2

33

(based on the “p2 on-shell” and “p2 = 0” approximations, respectively) are shown as a function of

Xt (chosen to be real) for MH± = 500 GeV, tanβ = 5 (left) and tanβ = 15 (right). The other

parameters are chosen according to eq. (4.1).

through Un, eq. (3.32). At large MH± values both matrices are insufficient for a precise

description.

Now we focus on the mixing of the heavy neutral Higgs bosons in the presence of com-

plex parameters. As a measure of the mixing between these two states we show in figure 11

U2
33 in the Re Xt–Im Xt plane. The choice for MH± and tan β is the same as in figure 9,

and the other parameters are specified in eq. (4.1). We have checked that U2
13 is very close

to zero (i.e. the lightest Higgs boson is nearly a pure CP-even state) and U2
33 ≈ 1 − U2

23.

The mixing varies strongly with ϕXt for both values of tan β and low and high MH± . In

particular, for relatively large values of |Xt|, the variation of the phase ϕXt (with |Xt|
kept fixed) can cause U2

33 (and consequently also U2
23) to take on any value in the range

0 ≤ U2
33 ≤ 1. It can furthermore be seen in all four panels of figure 11 that a large mixing

between the two heavy neutral Higgs bosons, corresponding to the parameter regions where

U2
33 ∼ 0.5, is a feature that can happen quite easily in the MSSM with complex parameters.

Studying the properties of the heavy Higgs bosons is therefore of particular interest, since

they could, at least in principle, give access to large CP-violating effects.

The connection between ∆M32 (the mass difference between the two heavy Higgs

bosons) and U2
33 (the mixing of h2 and h3, i.e. the CP composition of the two heavy Higgs

bosons) can be analyzed by comparing figure 11 with figure 9 (the choice for MH± and

tan β is the same in both figures). The regions of the nodal points in figure 11, i.e. the

points in which a change in Xt causes the largest variation in U2
33, coincide with the regions

where the mass difference ∆M32 is close to zero. This behaviour, which occurs for all MH±
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Figure 11: U2
33 is shown in the Re Xt–ImXt plane for tanβ = 5 (left) and tanβ = 15 (right)

for MH± = 150 GeV (upper row) and MH± = 500 GeV (lower row). The other parameters are as

given in eq. (4.1).

and tan β values, is clearly a resonance-type effect: in the parameter regions where the

masses of the Higgs states become degenerate, the mixing effects between the states are

maximal.

Finally we analyze the effect of the gaugino phases on the mixing of the heavy neutral

Higgs bosons. The dependence of U2
33 on the gaugino phases is depicted in figure 12 for

tan β = 5 and MH± = 500 GeV. We have chosen ReXt as ReXt = 655 GeV such that

Im Xt = 0 corresponds to a resonance region where ∆M32 is close to zero, namely the right
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Figure 12: U2
33 is shown as a function of ϕM2

(left plot) and ϕM1
(right plot) for Re Xt = 655 GeV

and ImXt = 0, 20, 200 GeV (solid, dashed, dot-dashed lines). The other parameters are the same

as in figure 11.

nodal point in the lower left plot of figure 11. For displaying the effects of the gaugino

phases ϕM2
and ϕM1

we have chosen in figure 12 three different values of the imaginary

part of Xt, ImXt = 0, 20, 200 GeV (solid, dashed, dot-dashed lines). For the case of the

nodal point where ImXt = 0 a very strong variation of U2
33 with both ϕM2

(left plot) and

ϕM1
(right plot) is observed, covering the whole allowed range 0 ≤ U2

33 ≤ 1. It should be

noted that one encounters in this case a strong variation of U2
33 with the gaugino phases

even if ϕM2
, ϕM1

are restricted to relatively small values. However, for Im Xt = 20 GeV,

i.e. only slightly away from the nodal point, the dependence of U2
33 on the gaugino phases

is already much smaller. For ImXt = 200 GeV the variation of U2
33 with ϕM2

and ϕM1
is

numerically insignificant. It becomes apparent that the gaugino phases can have a strong

impact on the mixing of the heavy Higgs bosons, but only directly on resonance. Outside

of the resonance regions the effects of the gaugino phases are small. This is in contrast

to ref. [54], where it was claimed that a strong dependence of the Higgs mixing on ϕM2

and ϕM1
were a general feature of the cMSSM.

5. The code FeynHiggs 2.5: program features

FeynHiggs2.5 [23, 44 – 46] is a Fortran code for the evaluation of the masses, decays and

production processes of Higgs bosons in the MSSM with real or complex parameters. In

this section we give a short overview about its features. More detailed information about

installation and use can be found in the appendix.

The calculation of the higher-order corrections is based on the Feynman-diagrammatic

(FD) approach as outlined in the previous sections. At the one-loop level, it consists

of a complete evaluation, including the full momentum and phase dependence, and as
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a further option the full 6 × 6 non-minimal flavor violation (NMFV) contributions for

scalar quarks [95, 96]. At the two-loop level all available corrections from the real MSSM

have been included (see refs. [41, 97, 98] for reviews). They are supplemented by the

resummation of the leading effects from the (scalar) b sector including the full complex

phase dependence [99].

The loop-corrected pole masses are determined as the real parts of the complex poles

as described in section 3.4. The imaginary parts of the Higgs-boson self-energies are fully

taken into account. The masses are evaluated with two independent numerical algorithms.

Deviations between the two methods indicate potential problems of numerical stability.

In addition to the Higgs-boson masses, the program also provides results for the effec-

tive Higgs-boson couplings and the wave function normalization factors for external Higgs

bosons as described in sections 3.5, 3.6.

Besides the computation of the Higgs-boson masses, effective couplings and wave func-

tion normalization factors, the program also evaluates an estimate for the theory un-

certainties of these quantities due to unknown higher-order corrections. The total un-

certainty is the sum of deviations from the central value, ∆X =
∑3

i=1 |Xi − X| with

X = {Mh1,h2,h3,H± , Uij , Zij}, where Uij is defined in eq. (3.32) and Zij in eqs. (3.25)–

(3.26). Alternatively instead of Uij also Rij , defined in eq. (3.31), can be evaluated. The

Xi are given by

• X1 is obtained by varying the renormalization scale (entering via the DR renormal-

ization) within 1
2mt 6 µ 6 2mt,

• X2 is obtained by using mpole
t instead of the running mt in the two-loop corrections,

• X3 is obtained by using an unresummed bottom Yukawa coupling, yb, i.e. a yb in-

cluding the leading O(αsαb) corrections, but not resummed to all orders.

Furthermore FeynHiggs2.5 contains the evaluation of all relevant Higgs-boson decay

widths and effective couplings (the latter are given in the conventions used in the MSSM

model file of the program FeynArts [70]). In particular, the following quantities are calcu-

lated:

• the total width for the neutral and charged Higgs bosons,

• the branching ratios and effective couplings of the three neutral Higgs bosons to

– SM fermions (see also refs. [50, 97]), hi → f̄ f ,

– SM gauge bosons (possibly off-shell), hi → γγ, ZZ∗,WW ∗, gg,

– gauge and Higgs bosons, hi → Zhj , hi → hjhk,

– scalar fermions, hi → f̃ †f̃ ,

– gauginos, hi → χ̃±
k χ̃∓

j , hi → χ̃0
l χ̃

0
m,

• the branching ratios and effective couplings of the charged Higgs boson to

– SM fermions, H− → f̄ f ′,
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– a gauge and Higgs boson, H− → hiW
−,

– scalar fermions, H− → f̃ †f̃ ′,

– gauginos, H− → χ̃−
k χ̃0

l .

• the production cross sections of the neutral Higgs bosons at the Tevatron and the LHC

in the approximation where the corresponding SM cross section is rescaled by the ra-

tios of the corresponding partial widths in the MSSM and the SM or by the wave func-

tion normalization factors for external Higgs bosons as defined through eqs. (3.25)–

(3.26), see ref. [100] for further details.

For comparisons with the SM, the following quantities are also evaluated for SM Higgs

bosons with the same mass as the three neutral MSSM Higgs bosons:

• the total decay width,

• the couplings and branching ratios of a SM Higgs boson to SM fermions,

• the couplings and branching ratios of a SM Higgs boson to SM gauge bosons (possibly

off-shell).

• the production cross sections at the Tevatron and the LHC [100].

FeynHiggs2.5 furthermore provides results for electroweak precision observables that give

rise to constraints on the SUSY parameter space (see ref. [42] and references therein):

• the quantity ∆ρ up to the two-loop level [101] that can be used to indicate disfavored

scalar top and bottom mass combinations,

• an evaluation of MW and sin2 θeff , where the SUSY contributions are treated in the

∆ρ approximation (see e.g. ref. [42]), taking into account at the one-loop level the

effects of complex phases in the scalar top/bottom sector [102] as well as NMFV

effects [95],

• the anomalous magnetic moment of the muon, including a full one-loop calcula-

tion [103, 104] as well as leading and subleading two-loop corrections [106, 105] (see

also ref. [107]),

• the evaluation of BR(b → sγ) including NMFV effects [96].

Finally, FeynHiggs2.5 possesses some further features:

• Transformation of the input parameters from the DR to the on-shell scheme (for the

scalar top and bottom parameters), including the full O(αs) and O(αt,b) corrections.

• Processing of SUSY Les Houches Accord (SLHA 2) data [108 – 110]. FeynHiggs2.5

reads the output of a spectrum generator file and evaluates the Higgs boson masses,

branching ratios etc. The results are written in the SLHA format to a new output

file.
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• Predefined input files for the SPS benchmark scenarios [111] and the Les Houches

benchmarks for Higgs boson searches at hadron colliders [112] are included.

• Detailed information about all the features of FeynHiggs2.5 are provided in man

pages.

6. Conclusions

We have presented new results for the complete one-loop contributions to the masses and

mixing effects in the Higgs-boson sector of the MSSM with complex parameters. They

have been obtained in the Feynman-diagrammatic approach using a hybrid renormalization

scheme where the masses are renormalized on-shell, while the DR scheme is applied for tan β

and the field renormalizations. A detailed description has been given of the renormalization

procedure and of the determination of the masses as the real parts of the complex poles

of the higher-order corrected Higgs propagator matrix. Besides the Higgs-boson masses

we have also derived the wave function normalization factors needed for processes with

external Higgs bosons. We have discussed different ways for defining effective Higgs-boson

couplings that incorporate leading higher-order effects. As a result, we propose effective

couplings based on the “p2 on-shell” approximation, where the Higgs-boson self-energies

are evaluated at the tree-level masses.

In our calculation of the Higgs-boson masses, couplings and wave function normal-

izations the full dependence on all relevant complex phases is taken into account. We

incorporate for the first time the complete effects arising from the imaginary parts of the

one-loop Higgs-boson self-energies in a consistent way. Our result for the complete one-

loop contributions in the cMSSM is supplemented by all available two-loop corrections in

the rMSSM and a resummation of the leading effects from the sbottom sector for complex

parameters.

In our numerical discussion we have first analyzed the impact of our results on the

physics of the light Higgs boson, which is of interest in view of the current exclusion bounds

and possible high-precision measurements of the properties of a light Higgs boson at the

next generation of colliders. We first investigated the impact of the different MSSM sectors

and the possible effects of the corresponding complex phases on the mass of the lightest

neutral Higgs boson of the cMSSM Higgs, Mh1
, and the coupling of the lightest Higgs to

gauge bosons. The well-known result from the rMSSM that the bulk of the corrections to

Mh1
arises from the fermion/sfermion sector is of course also reflected in the dependence

on the associated complex phases. We find that the effects associated with the variation

of ϕXt are in general numerically very important, leading to shifts in Mh1
of up to 8 GeV

in the examples that we have studied. The corrections beyond the fermion/sfermion loops,

arising from the chargino/neutralino sector, the gauge-boson sector and the Higgs sector,

can amount up to about 3 GeV. The dependence of Mh1
on the gaugino phases ϕM2

and

ϕM1
is in general rather small and will be difficult to resolve even in the high-precision

environment of the ILC (in particular in view of the existing experimental constraints on

the gaugino phases).
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We have furthermore compared our full result with various aproximations. We find

sizable deviations of up to 1.5 GeV in Mh1
between the full result and the “p2 = 0” approx-

imation, which is often used in the literature. We find that the “p2 on-shell” approximation

is significantly closer to the full result with maximum deviations below 0.5 GeV.

For the example of the partial decay widths of the three neutral Higgs bosons into τ

leptons we have compared the results based on the wave function normalization factors of

the external Higgs bosons with effective-coupling approximations. The dependence of the

partial widths on the phase ϕXt is very pronounced. We find that the result based on an

effective coupling in the “p2 = 0” approximation (corresponding to the effective potential

approach) deviates from the full result by typically up to 5%, with maximum deviations of

more than 10%. The effective couplings in the “p2 on-shell” approximation show a better

agreement with the full result for not too large values of MH± .

While over a large part of the cMSSM parameter space the lightest neutral Higgs

boson is almost a pure CP-even state, large CP-violating effects may influence the masses

and mixings of the two heavier neutral Higgs bosons of the cMSSM. We have analyzed

the impact of complex phases on the mass difference between the two heavy Higgs bosons,

∆M32, and on their mixing properties. Our full result has been compared with various

approximations. We find that the mass difference ∆M32 can significantly be enhanced by

threshold effects, so that mass differences of more than 10 GeV are possible even in the

decoupling region where MH± À MZ . Since the threshold effects go beyond the “p2 = 0”

approximation, large deviations between the full result and this approximation may occur.

The “p2 on-shell” approximation, on the other hand, is close to the full result even in the

threshold region. We have furthermore shown that effects of the imaginary parts of the

Higgs-boson self-energies can be sizable in the threshold region. They can be as large as

about 5 GeV in this region.

While the mass difference ∆M32 is sensitive to the effects of the complex phases in

the sfermion sector (the effects of the gaugino phases, on the other hand, are small), a

determination of ∆M32 will in general not be sufficient to establish the existence of non-

zero complex phases. We have shown that most values of ∆M32 that can be obtained in

the complex Re Xt–Im Xt plane can also be realized on the real axis, i.e. for ImXt = 0. In

order to extract information on the complex phases, the mass difference ∆M32 will have

to be combined with a suitable set of observables that exhibit a non-trivial dependence on

the complex phases.

We find that a large (CP-violating) mixing between the two heavy Higgs states is

possible over a significant part of the cMSSM parameter space. In the parameter regions

where the mass difference ∆M32 becomes very small a resonance-type behaviour is possible.

It gives rise to large variations in the mixing between the two Higgs bosons, i.e. a small

change in the phase ϕXt can have a dramatic effect on the mixing properties. Directly

on resonance even the gaugino phases ϕM2
and ϕM1

have a large impact on the Higgs

mixing. In contrast to ref. [54], where it was claimed that a strong dependence of the Higgs

mixing on ϕM2
and ϕM1

were a general feature of the cMSSM, we find that outside of the

resonance regions the effects of the gaugino phases are small. For a reliable description of

the resonance region it is crucial to correctly take into account the imaginary parts of the
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Higgs-boson self-energies.

Our analysis has shown that effective couplings in the “p2 = 0” approximation, as

used in the effective potential approach, can be insufficient for correctly matching the

Higgs-mixing properties to the higher-order corrected Higgs-boson masses. The effective

couplings based on the “p2 on-shell” approximation that we have studied in this paper,

on the other hand, have turned out to be well-suited for a numerical description of the

Higgs-boson mixing for not too large values of MH± . However, for large MH± the correct

decoupling properties of the effective couplings of the lightest Higgs boson are achieved in

the “p2 = 0” approximation, but not in the “p2 on-shell” approximation.

Our results for the Higgs-boson masses, couplings and wave function normalization

factors together with an estimate of the remaining theoretical uncertainties from unknown

higher-order corrections are implemented into the public Fortran code FeynHiggs2.5. The

code also contains the evaluation of the Higgs-boson decays and the main Higgs-boson

production channels at the Tevatron and the LHC, calculated using the full wave function

normalization factors. Further quantities that are useful for deriving constraints on the

SUSY parameter space are also evaluated, such as electroweak precision observables, the

anomalous magnetic moment of the muon and (in the case of complex parameters) electric

dipole moments. The code can be obtained from www.feynhiggs.de .
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A. The code FeynHiggs 2.5: installation and use

A.1 Installation and use

The installation process is straightforward and should take no more than a few minutes:

• Download the latest version from www.feynhiggs.de and unpack the tar archive.

• The package is built with ./configure and make. This creates the library libFH.a

and the command-line frontend FeynHiggs.

• To build also the Mathematica frontend MFeynHiggs, invoke make all.

• make install installs the files into a platform-dependent directory tree, for example

i586-linux/{bin,lib,include}.

• Finally, remove the intermediate files with make clean.

FeynHiggs2.5 has four modes of operation,
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• Library Mode: Invoke the FeynHiggs routines from a Fortran or C/C++ program

linked against the libFH.a library.

• Command-line Mode: Process parameter files in native FeynHiggs or SLHA format

at the shell prompt or in scripts with the standalone executable FeynHiggs.

• WWW Mode: Interactively choose the parameters at the FeynHiggs User Control

Center (FHUCC) and obtain the results on-line.

• Mathematica Mode: Access the FeynHiggs routines in Mathematica via MathLink

with MFeynHiggs.

A.1.1 Library mode

The core functionality of FeynHiggs2.5 is implemented in a static Fortran 77 library

libFH.a. All other interfaces are ‘just’ frontends to this library.

In view of Fortran’s lack of symbol scoping, all internal symbols have been prefixed

to make symbol collisions very unlikely. Also, the library contains only subroutines, no

functions, which simplifies the invocation. In Fortran, no include files are needed except

for access to the coupling structure. In C/C++, a single include file CFeynHiggs.h must

be included once for the prototypes. Detailed debugging output can be turned on at run

time.

The library provides the following functions:

• FHSetFlags sets the flags for the calculation.

• FHSetPara sets the input parameters directly, or

FHSetSLHA sets the input parameters from SLHA data.

• FHSetCKM sets the elements of the CKM matrix.

• FHSetNMFV sets the off-diagonal soft SUSY-breaking parameters in the scalar quark

sector that induce NMFV effects.

• FHSetDebug sets the debugging level.

• FHGetPara retrieves (some of) the MSSM parameters calculated from the input pa-

rameters, e.g. the sfermion masses.

• FHHiggsCorr computes the corrected Higgs masses, effective couplings and wave

function normalization factors.

• FHUncertainties estimates the uncertainties of the Higgs masses, effective couplings

and wave function normalization factors.

• FHCouplings computes the Higgs couplings and BRs.

• FHHiggsProd calculates the Higgs-boson production cross-sections at the Tevatron

and the LHC.
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• FHConstraints evaluates further electroweak precision observables.

These functions are described in detail in their respective man pages in the FeynHiggs

package.

A.1.2 Command-line mode

The FeynHiggs executable is a command-line frontend to the libFH.a library. It is invoked

at the shell prompt as

FeynHiggs inputfile [flags [scalefactor]]

where

• inputfile is the name of a parameter file (see below).

• flags is an (optional) string of integers giving the flag values, e.g. 40030211 (for

details see the description of FHSetFlags in the man pages). If flags is not specified,

40020211 is used. The fifth flag controls the evaluation of the effective couplings,

where 0 correspongs to the ”p2 on-shell” and 4 to the ”p2 = 0” approximation.

• scalefactor is an optional factor multiplying the renormalization scale. It is used to

determine the dependence on the renormalization scale, e.g. by varying scalefactor

from 0.5 to 2.

FeynHiggs understands two kinds of parameter files:

• Files in SUSY Les Houches Accord (SLHA) format. In this case FeynHiggs adds the

Higgs masses, mixings and decay widths to the SLHA data structure and writes the

latter to a file inputfile.fh.

In fact, FeynHiggs tries to read each file in SLHA format first, and if that fails, falls

back to its native format.

• Files in its native format, for example

MT 171.4

MB 4.7

MW 80.392

MZ 91.1875

MSusy 500

MA0 200

Abs(M_2) 200

Abs(MUE) 1000

TB 5

Abs(Xt) 1000

Abs(M_3) 800
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The syntax should be pretty self-explanatory. Complex quantities can be given either

in terms of absolute value Abs(X) and phase Arg(X), or as real part Re(X) and imagi-

nary part Im(X). Abbreviations, summarizing several parameters (such as MSusy) can

be used, or detailed information about the various soft SUSY-breaking parameters

can be given.

Furthermore, it is possible to define loops over parameters, to scan parts of parameter

space. For example,

TB 5 25 5

MA0 100 800 *2

MSusy 500 1000 /3

declares three loops:

a) over tan β from 5 to 25 linearly in steps of 5 (i.e. 5, 10, 15, 20, 25),

b) over MA from 100 to 800 logarithmically in steps of 2 (i.e. 100, 200, 400, 800),

c) over MSUSY from 500 to 1000 linearly in 3 steps (i.e. 500, 750, 1000).

The output is written in a human-readable form to the screen. Since this can be

quite lengthy, a % is printed in front of all lines with ‘non-essential’ information,

e.g. the details on couplings and decay widths. Thus to display only the ‘essential’

information, one just has to “grep” away the % lines, i.e.

FeynHiggs inputfile flags | grep -v %

The output can also be piped through the table filter to yield a machine-readable

version appropriate for plotting etc. For example,

FeynHiggs inputfile flags | table TB Mh0 > outputfile

creates outputfile with two columns, tan β and Mh. The syntax of the output file

is given as screen output.

Debugging output is governed by the environment variable FHDEBUG which can be set to

an integer from 0 to 3 (for details see the description of FHSetDebug in the man pages).

For example,

setenv FHDEBUG 1 (in csh or tcsh)

export FHDEBUG=1 (in sh or bash)

sets debugging level 1.

A.1.3 WWW mode

The FeynHiggs User Control Center (FHUCC) is a WWW interface to the command-line

executable FeynHiggs. It provides a convenient way to play with parameters, but is of

course not suited for large-scale parameter scans or extensive analyses.

To use the FHUCC, point your favorite Web browser at
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http://www.feynhiggs.de/fhucc

adjust the parameters, and submit the form to see the results. At the end of the result

page, the input file used for that FeynHiggs run is presented, too.

A.1.4 Mathematica mode

The MFeynHiggs executable provides access to the FeynHiggs functions from Mathematica

via the MathLink protocol. This is particularly convenient both because FeynHiggs can

be used interactively this way and because Mathematica’s sophisticated numerical and

graphical tools, e.g. FindMinimum, are available.

After starting Mathematica, install the package with

In[1]:= Install["MFeynHiggs"]

Out[1]= LinkObject[./i586-linux/bin/MFeynHiggs, 1, 1]

which makes all FeynHiggs subroutines available as Mathematica functions. For details of

their use, see the corresponding man pages.
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[95] S. Heinemeyer, W. Hollik, F. Merz and S. Peñaranda, Electroweak precision observables in the

MSSM with non-minimal flavor violation, Eur. Phys. J. C 37 (2004) 481 [hep-ph/0403228].

[96] T. Hahn, W. Hollik, J.I. Illana and S. Peñaranda, Interplay between H → BS̄ and b → sγ in
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